920 resultados para ACTIVATION DETECTORS
Resumo:
The aim of the present study was to compare the effect of lutein- and zeaxanthin-rich foods and supplements on macular pigment level (MPL) and serological markers of endothelial activation, inflammation and oxidation in healthy volunteers. We conducted two 8-week intervention studies. Study 1 (n 52) subjects were randomised to receive either carrot juice (a carotene-rich food) or spinach powder (a lutein- and zeaxanthin-rich food) for 8 weeks. Study 2 subjects (n 75) received supplements containing lutein and zeaxanthin, ß-carotene, or placebo for 8 weeks in a randomised, double-blind, placebo-controlled trial. MPL, serum concentrations of lipid-soluble antioxidants, inter-cellular adhesion molecule 1, vascular cell adhesion molecule 1, C-reactive protein and F2-isoprostane levels were assessed at baseline and post-intervention in both studies. In these intervention studies, no effects on MPL or markers of endothelial activation, inflammation or oxidation were observed. However, the change in serum lutein and zeaxanthin was associated or tended to be associated with the change in MPL in those receiving lutein- and zeaxanthin-rich foods (lutein r 0.40, P = 0.05; zeaxanthin r 0.30, P = 0.14) or the lutein and zeaxanthin supplement (lutein r 0.43, P = 0.03; zeaxanthin r 0.22, P = 0.28). In both studies, the change in MPL was associated with baseline MPL (food study r - 0.54, P <0.001; supplement study r - 0.40, P <0.001). We conclude that this 8-week supplementation with lutein and zeaxanthin, whether as foods or as supplements, had no significant effect on MPL or serological markers of endothelial activation, inflammation and oxidation in healthy volunteers, but may improve MPL in the highest serum responders and in those with initially low MPL.
Resumo:
1 Neuropeptide-induced histamine release is thought to occur via receptor-independent mechanisms, with net charge and lipophilicity being important factors.
Resumo:
Mast cell activation by polycationic substances is believed to result from a direct activation of G protein alpha subunits and it was suggested that the adaption of amphipathic, alpha-helical conformations would allow the peptide to reach the cytosolic compartment to interact with G proteins (Mousli et al., 1994, Immunopharmacology 27, 1, for review). We investigated the histamine-releasing activity of model peptides as well as analogues of magainin 2 amide and neuropeptide Y with different amphipathicities and alpha-helix content on rat peritoneal mast cells. Amphipathic helicity is not a prerequisite for mast cell activation. Moreover, non-helical magainin peptides with high histamine-releasing activity were less active in the liberation of carboxyfluoresceine from negatively charged liposomes, indicating that peptide-induced mast cell activation and peptide-induced membrane perturbation do not correlate. In contrast to the negligible influence of the secondary structure, amino acid configuration may exert a striking influence on peptide-induced mast cell activation. Thus histamine-release by substance P was markedly impaired when the L-amino acids in the positively charged N-terminal region were replaced by D-amino acids, with [D-Arg(1)]substance P being the most inactive substance P diastereoisomer.
Resumo:
The hydroxymethylglutaryl coenzmye A (HMG CoA) reductase inhibitor lovastatin is used to treat hyperlipidaemia. This agent prevents the isoprenylation of some proteins involved in signal transduction processes and inhibits IgE-receptor-linked mediator release from RBL-2H3 cells. In this study the effect of in vivo and in vitro administration of lovastatin on histamine release from rat peritoneal mast cells was examined. Lovastatin (4 mg/kg/day for 2 weeks) inhibited histamine release induced by concanavalin A (con A) from rat peritoneal mast cells of Hooded-Lister rats and both homozygous lean and obese Zucker rats. In contrast, release induced by antirat IgE (anti-IgE) was only significantly inhibited in cells derived from Hooded-Lister rats and that induced by compound 48/ 80 was not altered. Lovastatin (20 mu M, 24 h, in vitro) caused a significant inhibition of the subsequent histamine release to con A, anti-IgE and compound 48/80 but not to the calcium ionophore A 23187. It is important to determine whether such inhibitory effects are also observed after the chronic, clinical administration of lovastatin and other HMG CoA reductase inhibitors.
Resumo:
Background:In order to demonstrate that high dilutions of histamine are able to inhibit basophil activation in a reproducible fashion, several techniques were used in different research laboratories.
Resumo:
Purpose: Cancer cells have been shown to be more susceptible to Ran knockdown than normal cells. We nowinvestigate whether Ran is a potential therapeutic target of cancers with frequently found mutations that lead to higher Ras/MEK/ERK [mitogen-activated protein/extracellular signal-regulated kinase (ERK; MEK)] and phosphoinositide 3-kinase (PI3K)/Akt/mTORC1 activities.
Resumo:
The strength development of mortars containing ground granulated blast-furnace slag (ggbs) and portland cement was investigated. Variables were the level of ggbs in the binder, water-binder ratio and curing temperature. All mortars gain strength more rapidly at higher temperatures and have a lower calculated ultimate strength. The early age strength is much more sensitive to temperature for higher levels of ground granulated blast-furnace slag. The calculated ultimate strength is affected to a similar degree for all ggbs levels and water-binder ratios, with only the curing temperature having a significant effect. Apparent activation energies were determined according to ASTM C1074 and were found to vary approximately linearly with ggbs level from 34 kJ/mol for portland cement mortars to around 60 kJ/mol for mortars containing 70% ggbs. The water-binder ratio appears to have little or no effect oil the apparent activation energy. (c) 2005 Elsevier Ltd. All rights reserved.
Resumo:
This study was conducted to determine the perivascular cell responses to increased endothelial cell expression of insulin-like growth factor binding protein-3 (IGFBP-3) in mouse retina. The contribution of bone marrow cells in the IGFBP-3-mediated response was examined using green fluorescent protein-positive (GFP(+)) adult chimeric mice subjected to laser-induced retinal vessel occlusion injury. Intravitreal injection of an endothelial-specific IGFBP-3-expressing plasmid resulted in increased differentiation of GF(P)+ hematopoietic stem cells (HSCs) into pericytes and astrocytes as determined by immunohistochemical analysis. Administration of IGFBP-3 plasmid to mouse pups that underwent the oxygen-induced retinopathy model resulted in increased pericyte ensheathment and reduced pericyte apoptosis in the developing retina. Increased IGFBP-3 expression reduced the number of activated microglial cells and decreased apoptosis of neuronal cells in the oxygen-induced retinopathy model. In summary, IGFBP-3 increased differentiation of GFP(+) HSCs into pericytes and astrocytes while increasing vascular ensheathment of pericytes and decreasing apoptosis of pericytes and retinal neurons. All of these cytoprotective effects exhibited by IGFBP-3 overexpression can result in a more stable retinal vascular bed. Thus, endothelial expression of IGFBP-3 may represent a physiologic response to injury and may represent a therapeutic strategy for the treatment of ischemic vascular eye diseases, such as diabetic retinopathy and retinopathy of prematurity. (Am J Pathol 2011, 178:1517-1524; DOI: 10.1016/j.ajpath.2010.12.031)
Resumo:
Multiple extracellular mitogens are involved in the pathogenesis of proliferative forms of glomerulonephritis (GN), In vitro studies demonstrate the pivotal role of extracellular signal-regulated kinase (ERK) in the regulation of cellular proliferation in response to extracellular mitogens. In this study, we examined whether this kinase, as a convergence point of mitogenic stimuli, is activated in proliferative GN in vivo, Two different proliferative forms of anti-glomerular basal membrane (GEM) GN in rats were induced and whole cortical tissue as well as isolated glomeruli examined using kinase activity assays and Western blot analysis, Administration of rabbit anti-rat GEM serum to rats, preimmunized with rabbit IgG, induced an accelerated crescentic anti-GEM GN. A significant increase in cortical, and more dramatically glomerular ERK activity was detected at 1, 3, and 7 d after induction of GN, Immunization of Wistar-Kyoto rats with bovine GEM also induced a crescentic anti-GBM GN with an increase of renal cortical ERK activity after 4, 6, and 8 wk, ERK is phosphorylated and activated by the MAP kinase/ERK kinase (MEK), We detected a significant increase in the expression of glomerular MEK in the accelerated form of anti-GEM CN, providing a possible mechanism of long-term activation of ERK in this disease model, In contrast to ERK, activation of stress-activated protein kinase was only detectable at early stages of proliferative GN, indicating these related kinases to serve distinct roles in the pathogenesis of GN, Our observations point to ERK as a putative mediator of the proliferative response to immune injury in GN and suggest that upregulation of MEK is involved in the long-term regulation of ERK in vivo.