937 resultados para passenger trains
Resumo:
Seat belts are one of the most effective passive safety features in vehicles and there is a host of research literature attesting to the effectiveness of seat belts in protecting against death and injury. Even when use rates are high the potential gains in trauma reduction from further improvements in wearing rates are substantial. However, those currently most resistant to restraint use have also proven most difficult to target using conventional countermeasures. It is necessary to address the issues of non-wearing in order to achieve further gains in seat belt wearing. This study provide evidence-based recommendations for the way forward to tackle the problems of adult restraint non-use in light passenger vehicles in the short, medium and longer term in Australia. While there are substantial issues to be addressed for these groups, these are outside the scope of this study.
Resumo:
Train pedestrian collisions are the most likely to result in severe injuries and fatalities when compared to other types of rail crossing accidents. However, there is currently scant research that has examined the origins of pedestrians’ rule breaking at level crossings. As a result, this study examined the origins of pedestrians’ rule breaking behaviour at crossings, with particular emphasis directed towards examining the factors associated with making errors versus deliberation violations. A total of 636 individuals volunteered to participate in the study and completed either an online or paper version of the questionnaire. Quantitative analysis of the data revealed that knowledge regarding crossing rules was high, although up to 18% of level crossing users were either unsure or did not know (in some circumstances) when it was legal to cross at a level crossing. Furthermore, 156 participants (24.52%) reported having intentionally violated the rules at level crossings and 3.46% (n = 22) of the sample had previously made a mistake at a crossing. In regards to rule violators, males (particularly minors) were more likely to report breaking rules, and the most frequent occurrence was after the train had passed rather than before it arrives. Regression analysis revealed that males who frequently use pedestrian crossings and report higher sensation seeking traits are most likely to break the rules. This research provides evidence that pedestrians are more likely to deliberately violate rules (rather than make errors) at crossings and it illuminates high risk groups. This paper will further outline the study findings in regards to the development of countermeasures as well as provide direction for future research efforts in this area.
Resumo:
The problem of collisions between road users and trains at rail level crossings (RLXs) remains resistant to current countermeasures. One factor underpinning these collisions is poor Situation Awareness (SA) on behalf of the road user involved (i.e. not being aware of an approaching train). Although this is a potential threat at any RLX, the factors influencing SA may differ depending on whether the RLX is located in a rural or urban road environment. Despite this, there has been no empirical investigation regarding how road user SA might differ across distinct RLX environments. This knowledge is needed to establish the extent to which a uniform approach to RLX design and safety is acceptable. The aim of this paper is to investigate the differences in driver SA at rural versus urban RLXs. We present analyses of driver SA in both rural and urban RLX environments based on two recent on-road studies undertaken in Victoria, Melbourne. The findings demonstrate that driver SA is markedly different at rural and urban RLXs, and also that poor SA regarding approaching trains may be caused by different factors. The implications for RLX design and safety are discussed.
Resumo:
Air transport is a critical link to regional, rural and remote communities in Australia. Air services provide important economic and social benefits but very little research has been done on assessing the value of regional aviation. This research provides the first empirical evidence that there is short and long run causality between regional aviation and economic growth. The authors analysed 88 regional airports in Australia over a period of 1985–86 to 2010–11 to determine the catalytic impacts of regional air transport on regional economic growth. The analysis was conducted using annual data related to total airport passenger movements – for the level of airport activity, and real aggregate taxable income – to represent economic growth. A significant bi-directional relationship was established: airports have an impact on regional economic growth and the economy directly impacts regional air transport. The economic significance of regional air transport confirms the importance of the airport as infrastructure for regional councils and the need for them to maintain and develop local airports. Funding should be targeted at airports directly to support regional development.
Resumo:
Smart Card Automated Fare Collection (AFC) data has been extensively exploited to understand passenger behavior, passenger segment, trip purpose and improve transit planning through spatial travel pattern analysis. The literature has been evolving from simple to more sophisticated methods such as from aggregated to individual travel pattern analysis, and from stop-to-stop to flexible stop aggregation. However, the issue of high computing complexity has limited these methods in practical applications. This paper proposes a new algorithm named Weighted Stop Density Based Scanning Algorithm with Noise (WS-DBSCAN) based on the classical Density Based Scanning Algorithm with Noise (DBSCAN) algorithm to detect and update the daily changes in travel pattern. WS-DBSCAN converts the classical quadratic computation complexity DBSCAN to a problem of sub-quadratic complexity. The numerical experiment using the real AFC data in South East Queensland, Australia shows that the algorithm costs only 0.45% in computation time compared to the classical DBSCAN, but provides the same clustering results.
Resumo:
Railways are an important mode of transportation. They are however large and complex and their construction, management and operation is time consuming and costly. Evidently planning the current and future activities is vital. Part of that planning process is an analysis of capacity. To determine what volume of traffic can be achieved over time, a variety of railway capacity analysis techniques have been created. A generic analytical approach that incorporates more complex train paths however has yet to be provided. This article provides such an approach. This article extends a mathematical model for determining the theoretical capacity of a railway network. The main contribution of this paper is the modelling of more complex train paths whereby each section can be visited many times in the course of a train’s journey. Three variant models are formulated and then demonstrated in a case study. This article’s numerical investigations have successively shown the applicability of the proposed models and how they may be used to gain insights into system performance.
Resumo:
Background Injury is the leading cause of adolescent death and injury around the road is a common source of adolescent injuries. Skills for Preventing Injury in Youth (SPIY) is a comprehensive program developed in Australia for early adolescents (term-long curriculum, including looking out for friends, first-aid training coupled with teacher school-connectedness professional development). Jessors’ Protection-Risk Framework guided the program approach focusing on building protective relationships. Method A randomized controlled trial with 35 schools was undertaken. Students completed surveys at baseline, six-months post-intervention and twelve-months post intervention. There were 1686 students (56% female) who completed the twelve-month survey, including the Extended-Adolescent Injury Checklist whereby students self-report on medically-treated injuries over the previous three-months (only road-related items are reported in this study; cycling, motorcycle riding, pedestrian, and riding as a passenger). Randomly selected SPIY classes also participated in focus groups and reported on perceptions of SPIY and injury risk behavior. Results As a check of randomization baseline differences of the variables were examined, with no significant differences between intervention and control groups. At the 12-month follow-up, there were fewer medically-treated injuries among the intervention students compared with the control group, particularly associated with being a passenger. The process evaluation revealed students perceived change in injury risk and risk behaviors. Conclusions While data analyses are continuing, the results indicate that the program seeking to encourage adolescents to look out for their friends, build connections to school and provide first aid skills training goes some way to reducing self-reported medically-treated injuries around the road.
Resumo:
Passenger flow simulations are an important tool for designing and managing airports. This thesis examines the different boarding strategies for the Boeing 777 and Airbus 380 aircraft in order to investigate their current performance and to determine minimum boarding times. The most optimal strategies have been discovered and new strategies that are more efficient are proposed. The methods presented offer reduced aircraft boarding times which plays an important role for reducing the overall aircraft Turn Time for an airline.
Resumo:
Improving safety at railway level crossings is an important issue for the Australian transport system. Governments, the rail industry and road organisations have tried a variety of countermeasures for many years to improve railway level crossing safety. New types of Intelligent Transport System (ITS) interventions are now emerging due to the availability and the affordability of technology. These interventions target both actively and passively protected railway level crossings and attempt to address drivers’ errors at railway crossings, which are mainly a failure to detect the crossing or the train and misjudgement of the train approach speed and distance. This study aims to assess the effectiveness of three emerging ITS that the rail industry considers implementing in Australia: a visual in-vehicle ITS, an audio in-vehicle ITS, as well as an on-road flashing beacons intervention. The evaluation was conducted on an advanced driving simulator with 20 participants per trialled technology, each participant driving once without any technology and once with one of the ITS interventions. Every participant drove through a range of active and passive crossings with and without trains approaching. Their speed approach of the crossing, head movements and stopping compliance were measured. Results showed that driver behaviour was changed with the three ITS interventions at passive crossings, while limited effects were found at active crossings, even with reduced visibility. The on-road intervention trialled was unsuccessful in improving driver behaviour; the audio and visual ITS improved driver behaviour when a train was approaching. A trend toward worsening driver behaviour with the visual ITS was observed when no trains were approaching. This trend was not observed for the audio ITS intervention, which appears to be the ITS intervention with the highest potential for improving safety at passive crossings.
Resumo:
It is impracticable to upgrade the 18,900 Australian passive crossings as such crossings are often located in remote areas, where power is lacking and with low road and rail traffic. The rail industry is interested in developing innovative in-vehicle technology interventions to warn motorists of approaching trains directly in their vehicles. The objective of this study was therefore to evaluate the benefits of the introduction of such technology. We evaluated the changes in driver performance once the technology is enabled and functioning correctly, as well as the effects of an unsafe failure of the technology? We conducted a driving simulator study where participants (N=15) were familiarised with an in-vehicle audio warning for an extended period. After being familiarised with the system, the technology started failing, and we tested the reaction of drivers with a train approaching. This study has shown that with the traditional passive crossings with RX2 signage, the majority of drivers complied (70%) and looked for trains on both sides of the rail track. With the introduction of the in-vehicle audio message, drivers did not approach crossings faster, did not reduce their safety margins and did not reduce their gaze towards the rail tracks. However participants’ compliance at the stop sign decreased by 16.5% with the technology installed in the vehicle. The effect of the failure of the in-vehicle audio warning technology showed that most participants did not experience difficulties in detecting the approaching train even though they did not receive any warning message. This showed that participants were still actively looking for trains with the system in their vehicle. However, two participants did not stop and one decided to beat the train when they did not receive the audio message, suggesting potential human factors issues to be considered with such technology.
Resumo:
In this thesis, the issue of airport terminal design is examined from a novel perspective: that of the passenger rather than the airport operator. A qualitative approach, based on interviews with 199 passengers at Brisbane International Terminal was adopted. The outcomes of this research make the following three key contributions to existing knowledge: (i) identification of a paradox in the Level of Service metrics, (ii) development of a conceptual model of passenger experience and six design principles and (iii) contribution towards advancing the theoretical knowledge about passengers and their experience in airport terminals.
Resumo:
Suboptimal restraint use, particularly the incorrect use of restraints, is a significant and widespread problem among child vehicle occupants, and increases the risk of injury. Previous research has identified comfort as a potential factor influencing suboptimal restraint use. Both the real comfort experienced by the child and the parent’s perception of the child’s comfort are reported to influence the optimal use of restraints. Problems with real comfort may lead the child to misuse the restraint in their attempt to achieve better comfort whilst parent-perceived discomfort has been reported as a driver for premature graduation and inappropriate restraint choice. However, this work has largely been qualitative. There has been no research that objectively studies either the association between real and parental perceived comfort, or any association between comfort and suboptimal restraint use. One barrier to such studies is the absence of validated tools for quantifying real comfort in children. We aimed to develop methods to examine both real and parent-perceived comfort and examine their effects on suboptimal restraint use. We conducted online parent surveys (n=470) to explore what drives parental perceptions of their child’s comfort in restraint systems (study 1) and used data from field observation studies (n=497) to examine parent-perceived comfort and its relationship with observed restraint use (study 2). We developed methods to measure comfort in children in a laboratory setting (n=14) using video analysis to estimate a Discomfort Avoidance Behaviour (DAB) score, pressure mapping and adapted survey tools to differentiate between comfortable and induced discomfort conditions (study 3). Preliminary analysis of our recent online survey of Australian parents (study 1) indicates that 23% of parents report comfort as a consideration when making a decision to change restraints. Logistic regression modelling of data collected during the field observation study (study 2) revealed that parent-perceived discomfort was not significantly associated with premature graduation. Contrary to expectation, children of parents who reported that their child was comfortable were almost twice as likely to have been incorrectly restrained (p<0.01, 95% CI 1.24 - 2.77). In the laboratory study (study 3) we found our adapted survey tools did not provide a reliable measurement of real comfort among children. However our DAB score was able to differentiate between comfortable and induced discomfort conditions and correlated well with pressure mapping. Our results suggest that while some parents report concern about their child’s comfort, parent-reported comfort levels were not associated with restraint choice. If comfort is important for optimal restraint use, it is likely to be the real comfort of the child rather than that reported by the parent. The method we have developed for studying real comfort can be used in naturalistic studies involving child occupants to further understand this relationship. This work will be of interest to vehicle and child restraint manufacturers interested in improving restraint design for young occupants as well as researchers and other stakeholders interested in reducing the incidence of restraint misuse among children.
Resumo:
Do you know how to drive a train? If you don’t you probably believe that you have a fair idea of what it’s all about. Forget what you know, or think you know. Trains are heavy and fast but they feel and handle like driving on ice so they take a long time to stop. The braking distances for a typical piece of track are unlike anything you will have experienced before. With that in mind, imagine you were driving with a bit of dew, or grease, or millipede over the track. You would lose traction and slip everywhere. To avoid this, you would need a compensatory driving strategy. You could drive more slowly, or brake sooner, or change how you brake. Your experience and intuition would lead the way. Folks, this is why it’s called “driving by the seat of your pants”...
Resumo:
In public transport, seamless coordinated transfer strengthens the quality of service and attracts ridership. The problem of transfer coordination is sophisticated due to (1) the stochasticity of travel time variability, (2) unavailability of passenger transfer plan. However, the proliferation of Big Data technologies provides a tremendous opportunity to solve these problems. This dissertation enhances passenger transfer quality by offline and online transfer coordination. While offline transfer coordination exploits the knowledge of travel time variability to coordinate transfers, online transfer coordination provides simultaneous vehicle arrivals at stops to facilitate transfers by employing the knowledge of passenger behaviours.
Resumo:
Even though crashes between trains and road users are rare events at railway level crossings, they are one of the major safety concerns for the Australian railway industry. Nearmiss events at level crossings occur more frequently, and can provide more information about factors leading to level crossing incidents. In this paper we introduce a video analytic approach for automatically detecting and localizing vehicles from cameras mounted on trains for detecting near-miss events. To detect and localize vehicles at level crossings we extract patches from an image and classify each patch for detecting vehicles. We developed a region proposals algorithm for generating patches, and we use a Convolutional Neural Network (CNN) for classifying each patch. To localize vehicles in images we combine the patches that are classified as vehicles according to their CNN scores and positions. We compared our system with the Deformable Part Models (DPM) and Regions with CNN features (R-CNN) object detectors. Experimental results on a railway dataset show that the recall rate of our proposed system is 29% higher than what can be achieved with DPM or R-CNN detectors.