994 resultados para musical expression
Resumo:
The 2.3 kb BamHI fragment from the colitis bacteriophage DNA was transcribed and translated into a 20 kd structural protein P6, in a coupled transcription-translation system derived from Escherichia coli. This protein was expressed in vivo by the 2.3 kb DNA cloned in pBR322. The gene with the regulatory elements for this protein was located on the 680 bp AvaII fragment of the insert DNA. It hybridized with two RNAs of sizes 520 and 1630 nucleotides indicating that both are messengers for the 20 kd protein. Dot-blot hybridization showed that the transcripts for P6 reached a maximum level at 12 min after phage infection.
Resumo:
Self-similarity, a concept taken from mathematics, is gradually becoming a keyword in musicology. Although a polysemic term, self-similarity often refers to the multi-scalar feature repetition in a set of relationships, and it is commonly valued as an indication for musical coherence and consistency . This investigation provides a theory of musical meaning formation in the context of intersemiosis, that is, the translation of meaning from one cognitive domain to another cognitive domain (e.g. from mathematics to music, or to speech or graphic forms). From this perspective, the degree of coherence of a musical system relies on a synecdochic intersemiosis: a system of related signs within other comparable and correlated systems. This research analyzes the modalities of such correlations, exploring their general and particular traits, and their operational bounds. Looking forward in this direction, the notion of analogy is used as a rich concept through its two definitions quoted by the Classical literature: proportion and paradigm, enormously valuable in establishing measurement, likeness and affinity criteria. Using quantitative qualitative methods, evidence is presented to justify a parallel study of different modalities of musical self-similarity. For this purpose, original arguments by Benoît B. Mandelbrot are revised, alongside a systematic critique of the literature on the subject. Furthermore, connecting Charles S. Peirce s synechism with Mandelbrot s fractality is one of the main developments of the present study. This study provides elements for explaining Bolognesi s (1983) conjecture, that states that the most primitive, intuitive and basic musical device is self-reference, extending its functions and operations to self-similar surfaces. In this sense, this research suggests that, with various modalities of self-similarity, synecdochic intersemiosis acts as system of systems in coordination with greater or lesser development of structural consistency, and with a greater or lesser contextual dependence.
Resumo:
The diverse biological activities of the insulin-like growth factors (IGF-1 and IGF-2) are mediated by the IGF-1 receptor (IGF-1R). These actions are modulated by a family of six IGF-binding proteins (ICFBP-1-6; 22-31 kDa) that via high affinity binding to the IGFs (K-D similar to 300-700 pM) both protect the IGFs in the circulation and attenuate IGF action by blocking their receptor access In recent years, IGFBPs have been implicated in a variety of cancers However, the structural basis of their interaction with IGFs and/or other proteins is not completely understood A critical challenge in the structural characterization of full-length IGFBPs has been the difficulty in expressing these proteins at levels suitable for NMR/X-ray crystallography analysis Here we describe the high-yield expression of full-length recombinant human IGFBP-2 (rhIGFBP-2) in Eschericha coli Using a single step purification protocol, rhIGFBP-2 was obtained with >95% purity and structurally characterized using NMR spectroscopy. The protein was found to exist as a monomer at the high concentrations required for structural studies and to exist in a single conformation exhibiting a unique intra-molecular disulfide-bonding pattern The protein retained full biologic activity. This study represents the first high-yield expression of wild-type recombinant human IGFBP-2 in E coli and first structural characterization of a full-length IGFBP (C) 2010 Elsevier Inc. All rights reserved
Resumo:
Monocarboxylate transporters (MCTs), especially the isoforms MCT1 - MCT4, cotransport lactate and protons across the cell membranes. They are thus essential for pH regulation and homeostasis in glycolytic cells such as red blood cells (RBCs), and skeletal muscle cells during intense exercise. In 70% of the Standardbred horses the lactate transport activity (TA) in RBCs is high and transport is mediated mainly by MCTs. In the rest 30% of the Standardbreds MCT mediated transport route is not active and the TA is low. MCTs need an ancillary protein for their proper localization and functioning in the plasma membrane. The ancillary protein for MCT1 and MCT4 is a member of immunoglobulin superfamily, CD147. Here we determined the expression of MCT isoforms and CD147 in equine RBCs and gluteal muscle. We sequenced the cDNA of horse MCT1 and CD147 to achieve horse-specific antibodies and to reveal sequence variations that may affect the TA of RBCs. The amount of MCT1 and CD147 mRNA in muscle were also studied. ---- In all, 73 horses representing different breeds were used. Blood samples were drawn from the jugular vein and muscle samples were taken either from gluteal muscle using biopsy needle or during castration from expendable cremaster muscle. The TA of RBCs was studied using radiolabeled lactate and the amount of MCT isoforms and CD147 in the plasma membranes using Western blotting. The level of mRNA in muscle cells was determined using qPCR. Isoforms MCT1 and MCT2 were found in the RBCs and isoforms MCT1 and MCT4 in the muscle cells of horses. The TA of RBCs was dependent on the expression of CD147 and MCT1 in the plasma membrane. Sequence variations were found in the cDNA of both MCT1 and CD147, but they did not explain the inactivity of MCT1 mediated transport route. The single nucleotide polymorphism (SNP) Met125Val in CD147 that existed parallel with an SNP in 3´-untranslated region explained, however, attenuation in CD147 expression in Standardbreds. A single mutation Ile51Val also decreased the expression of CD147 in one Warmblood. The MCT1 and CD147 mRNA concentrations in the gluteal muscle were higher in horses with higher MCT1 and CD147 expression in RBCs and lower in horses with minor expression of CD147 and MCT1. This suggests that the bimodal distribution of TA is due to differences in transcriptional regulation that is functioning in parallel in MCT1 and CD147 gene.
Resumo:
Ewing sarcoma is an aggressive and poorly differentiated malignancy of bone and soft tissue. It primarily affects children, adolescents, and young adults, with a slight male predominance. It is characterized by a translocation between chromosomes 11 and 22 resulting in the EWSR1-FLI1fusion transcription factor. The aim of this study is to identify putative Ewing sarcoma target genes through an integrative analysis of three microarray data sets. Array comparative genomic hybridization is used to measure changes in DNA copy number, and analyzed to detect common chromosomal aberrations. mRNA and miRNA microarrays are used to measure expression of protein-coding and miRNA genes, and these results integrated with the copy number data. Chromosomal aberrations typically contain also bystanders in addition to the driving tumor suppressor and oncogenes, and integration with expression helps to identify the true targets. Correlation between expression of miRNAs and their predicted target mRNAs is also evaluated to assess the results of post-transcriptional miRNA regulation on mRNA levels. The highest frequencies of copy number gains were identified in chromosome 8, 1q, and X. Losses were most frequent in 9p21.3, which also showed an enrichment of copy number breakpoints relative to the rest of the genome. Copy number losses in 9p21.3 were found have a statistically significant effect on the expression of MTAP, but not on CDKN2A, which is a known tumor-suppressor in the same locus. MTAP was also down-regulated in the Ewing sarcoma cell lines compared to mesenchymal stem cells. Genes exhibiting elevated expression in association with copy number gains and up-regulation compared to the reference samples included DCAF7, ENO2, MTCP1, andSTK40. Differentially expressed miRNAs were detected by comparing Ewing sarcoma cell lines against mesenchymal stem cells. 21 up-regulated and 32 down-regulated miRNAs were identified, includingmiR-145, which has been previously linked to Ewing sarcoma. The EWSR1-FLI1 fusion gene represses miR-145, which in turn targets FLI1 forming a mutually repressive feedback loop. In addition higher expression linked to copy number gains and compared to mesenchymal stem cells, STK40 was also found to be a target of four different miRNAs that were all down-regulated in Ewing sarcoma cell lines compared to the reference samples. SLCO5A1 was identified as the only up-regulated gene within a frequently gained region in chromosome 8. This region was gained in over 90 % of the cell lines, and also with a higher frequency than the neighboring regions. In addition, SLCO5A1 was found to be a target of three miRNAs that were down-regulated compared to the mesenchymal stem cells.
Resumo:
A microscopic expression for the frequency and wave vector dependent dielectric constant of a dense dipolar liquid is derived starting from the linear response theory. The new expression properly takes into account the effects of the translational modes in the polarization relaxation. The longitudinal and the transverse components of the dielectric constant show vastly different behavior at the intermediate values of the wave vector k. We find that the microscopic structure of the dense liquid plays an important role at intermediate wave vectors. The continuum model description of the dielectric constant, although appropriate at very small values of wave vector, breaks down completely at the intermediate values of k. Numerical results for the longitudinal and the transverse dielectric constants are obtained by using the direct correlation function from the mean‐spherical approximation for dipolar hard spheres. We show that our results are consistent with all the limiting expressions known for the dielectric function of matter.
Resumo:
Malignant astrocytoma includes anaplastic astrocytoma (grade III) and glioblastoma (grade IV). Among them, glioblastoma is the most common primary brain tumor with dismal responses to all therapeutic modalities. We performed a large-scale, genome-wide microRNA (miRNA) (n=756) expression profiling of 26 glioblastoma, 13 anaplastic astrocytoma and 7 normal brain samples with an aim to find deregulated miRNA in malignant astrocytoma. We identified several differentially regulated miRNAs between these groups, which could differentiate glioma grades and normal brain as recognized by PCA. More importantly, we identified a most discriminatory 23-miRNA expression signature, by using PAM, which precisely distinguished glioblastoma from anaplastic astrocytoma with an accuracy of 95%. The differential expression pattern of nine miRNAs was further validated by real-time RT-PCR on an independent set of malignant astrocytomas (n-72) and normal samples (n=7). Inhibition of two glioblastoma-upregulated miRNAs (miR-21 and miR-23a) and exogenous overexpression of two glioblastoma-downregulated miRNAs (miR-218 and miR-219-5p) resulted in reduced soft agar colony formation but showed varying effects on cell proliferation and chemosensitivity. Thus we have identified the miRNA expression signature for malignant astrocytoma, in particular glioblastoma, and showed the miRNA involvement and their importance in astrocytoma development. Modern Pathology (2010) 23, 1404-1417; doi:10.1038/modpathol.2010.135; published online 13 August 2010
Resumo:
Background: Molecular chaperones have been shown to be important in the growth of the malaria parasite Plasmodium falciparum and inhibition of chaperone function by pharmacological agents has been shown to abrogate parasite growth. A recent study has demonstrated that clinical isolates of the parasite have distinct physiological states, one of which resembles environmental stress response showing up-regulation of specific molecular chaperones. Methods: Chaperone networks operational in the distinct physiological clusters in clinical malaria parasites were constructed using cytoscape by utilizing their clinical expression profiles. Results: Molecular chaperones show distinct profiles in the previously defined physiologically distinct states. Further, expression profiles of the chaperones from different cellular compartments correlate with specific patient clusters. While cluster 1 parasites, representing a starvation response, show up-regulation of organellar chaperones, cluster 2 parasites, which resemble active growth based on glycolysis, show up-regulation of cytoplasmic chaperones. Interestingly, cytoplasmic Hsp90 and its co-chaperones, previously implicated as drug targets in malaria, cluster in the same group. Detailed analysis of chaperone expression in the patient cluster 2 reveals up-regulation of the entire Hsp90-dependent pro-survival circuitries. In addition, cluster 2 also shows up-regulation of Plasmodium export element (PEXEL)-containing Hsp40s thought to have regulatory and host remodeling roles in the infected erythrocyte. Conclusion: In all, this study demonstrates an intimate involvement of parasite-encoded chaperones, PfHsp90 in particular, in defining pathogenesis of malaria.
Resumo:
Taking advantage of the degeneracy of the genetic code we have developed a novel approach to introduce, within a gene, DNA sequences capable of adopting unusual structures and to investigate the role of such sequences in regulation of gene expression in vivo. We used a computer program that generates alternative codon sequences for the same amino-acid sequence to convert a stretch of nucleotides into an inverted-repeat sequence with the potential to adopt cruciform structure. This approach was used to replace a 51-base-pair EcoRI-HindIII segment in the N-terminal region of the beta-galactosidase gene in plasmid pUC19 with a 51-bp synthetic oligonucleotide sequence with the potential to adopt a cruciform structure with 18 bp in the stem region. In selecting the 51-bp sequence, care was taken to include those codons that are preferred in E. coli. E. coli DH5-alpha cells harbouring the plasmid containing the redesigned sequence showed drastic reduction in expression of the beta-galactosidase gene compared to cells harbouring the plasmid with the native sequence. This approach demonstrates the possibility of introducing DNA secondary-structure elements to alter regulation of gene expression in vivo.
Resumo:
The function of a protein in a cell often involves coordinated interactions with one or several regulatory partners. It is thus imperative to characterize a protein both in isolation as well as in the context of its complex with an interacting partner. High resolution structural information determined by X-ray crystallography and Nuclear Magnetic Resonance offer the best route to characterize protein complexes. These techniques, however, require highly purified and homogenous protein samples at high concentration. This requirement often presents a major hurdle for structural studies. Here we present a strategy based on co-expression and co-purification to obtain recombinant multi-protein complexes in the quantity and concentration range that can enable hitherto intractable structural projects. The feasibility of this strategy was examined using the sigma factor/anti-sigma factor protein complexes from Mycobacterium tuberculosis. The approach was successful across a wide range of sigma factors and their cognate interacting partners. It thus appears likely that the analysis of these complexes based on variations in expression constructs and procedures for the purification and characterization of these recombinant protein samples would be widely applicable for other multi-protein systems. (C) 2010 Elsevier Inc. All rights reserved.
Resumo:
The contents of fibroin H RNA as a function of development have been quantitated in the posterior silk glands of Bombyx mori larvae on different days of 4th and 5th instars. The fibroin RNA levels increased during the feeding stages of larvae and the RNA got completely degraded during the interim moult. The patterns of accumulation of fibroin RNA were similar in both the instars. Although there was considerable increase in the fibroin RNA content during the 5th larval instar, the relative abundance of fibroin RNA in the total RNA was fairly constant during the 4th and 5th instars. The increased content of fibroin RNA in 5th instar was the consequence of an overall increase in transcription accompanying the development progress, rather than specific increase only in fibroin transcription. The contents of fibroin protein in the 4th and 5th instars of development have also been quantitated making use of a sensitive radioimmune assay with a purified, antifibroin antibody. There were substantial differences between 4th and 5th instars in the absolute fibroin contents as well as the relative proportion of fibroin in the total proteins. These results implied that although the fibroin gene was transcribed at the same efficiency during the 4th and 5th instars, the translational efficiency was much lower during the 4th instar. The extent of polyadenylation of fibroin RNA was similar in both instars. However, there was a two-fold increase in the polysome association of fibroin RNA in the 5th instar. Over and above this, there was substantial increase during the 5th instar in the contents of those tRNAs. (e.g. Gly, Ala and Ser) which are abundantly represented in fibroin and therefore directly related to the expression of fibroin. The increased polysome association of fibroin mRNA and the adequate supply of cognate tRNAs in the 5th instar, together contributes to the translational regulation of fibroin in a developmental stage-specific manner. Based on these observations, we propose that translational regulation plays a major role in the development stage-specific synthesis of fibroin in Bombyx mori.
Resumo:
In vitro translation of belladonna mottle virus BDMV(I) genomic RNA in a rabbit reticulocyte lysate system produced proteins of Mr 210,000, 150,000 and 78,000 which form the non-structural proteins. The coat protein, on the other hand, was expressed from a subgenomic RNA which was found to be encapsidated in the empty capsids forming the top component viral particles. The implications of subgenomic RNA encapsidation in viral replication and assembly are discussed.
Resumo:
In Salmonella typhimurium, propionate is oxidized to pyruvate via the 2-methylcitric acid cycle. The last step of this cycle, the cleavage of 2-methylisocitrate to succinate and pyruvate, is catalysed by 2-methylisocitrate lyase (EC 4.1.3.30). Methylisocitrate lyase (molecular weight 32 kDa) with a C-terminal polyhistidine affinity tag has been cloned and overexpressed in Escherichia coli and purified and crystallized under different conditions using the hanging-drop vapour-diffusion technique. Crystals belong to the orthogonal space group P2(1)2(1)2(1), with unit-cell parameters a = 63.600, b = 100.670, c = 204.745 Angstrom. A complete data set to 2.5 Angstrom resolution has been collected using an image-plate detector system mounted on a rotating-anode X-ray generator.
Resumo:
The work presented here has focused on the role of cation-chloride cotransporters (CCCs) in (1) the regulation of intracellular chloride concentration within postsynaptic neurons and (2) on the consequent effects on the actions of the neurotransmitter gamma-aminobutyric acid (GABA) mediated by GABAA receptors (GABAARs) during development and in pathophysiological conditions such as epilepsy. In addition, (3) we found that a member of the CCC family, the K-Cl cotransporter isoform 2 (KCC2), has a structural role in the development of dendritic spines during the differentiation of pyramidal neurons. Despite the large number of publications dedicated to regulation of intracellular Cl-, our understanding of the underlying mechanisms is not complete. Experiments on GABA actions under resting steady-state have shown that the effect of GABA shifts from depolarizing to hyperpolarizing during maturation of cortical neurons. However, it remains unclear, whether conclusions from these steady-state measurements can be extrapolated to the highly dynamic situation within an intact and active neuronal network. Indeed, GABAergic signaling in active neuronal networks results in a continuous Cl- load, which must be constantly removed by efficient Cl- extrusion mechanisms. Therefore, it seems plausible to suggest that key parameters are the efficacy and subcellular distribution of Cl- transporters rather than the polarity of steady-state GABA actions. A further related question is: what are the mechanisms of Cl- regulation and homeostasis during pathophysiological conditions such as epilepsy in adults and neonates? Here I present results that were obtained by means of a newly developed method of measurements of the efficacy of a K-Cl cotransport. In Study I, the developmental profile of KCC2 functionality during development was analyzed both in dissociated neuronal cultures and in acute hippocampal slices. A novel method of photolysis of caged GABA in combination with Cl- loading to the somata was used in this study to assess the extrusion efficacy of KCC2. We demonstrated that these two preparations exhibit a different temporal profile of functional KCC2 upregulation. In Study II, we reported an observation of highly distorted dendritic spines in neurons cultured from KCC2-/- embryos. During their development in the culture dish, KCC2-lacking neurons failed to develop mature, mushroom-shaped dendritic spines but instead maintained an immature phenotype of long, branching and extremely motile protrusions. It was shown that the role of KCC2 in spine maturation is not based on its transport activity, but is mediated by interactions with cytoskeletal proteins. Another important player in Cl- regulation, NKCC1 and its role in the induction and maintenance of native Cl- gradients between the axon initial segment (AIS) and soma was the subject of Study III. There we demonstrated that this transporter mediates accumulation of Cl- in the axon initial segment of neocortical and hippocampal principal neurons. The results suggest that the reversal potential of the GABAA response triggered by distinct populations of interneurons show large subcellular variations. Finally, a novel mechanism of fast post-translational upregulation of the membrane-inserted, functionally active KCC2 pool during in-vivo neonatal seizures and epileptiform-like activity in vitro was identified and characterized in Study IV. The seizure-induced KCC2 upregulation may act as an intrinsic antiepileptogenic mechanism.
Resumo:
Mycobacterium tuberculosis is known to reside latently in a significant fraction of the human population. Although the bacterium possesses an aerobic mode of metabolism, it adapts to persistence under hypoxic conditions such as those encountered in granulomas. While in mammalian systems hypoxia is a recognized DNA-damaging stress, aspects of DNA repair in mycobacteria under such conditions have not been studied. We subjected Mycobacterium smegmatis, a model organism, to the Wayne's protocol of hypoxia. Analysis of the mRNA of a key DNA repair enzyme, uracil DNA glycosylase (Ung), by real-time reverse transcriptase PCR (RT-PCR) revealed its downregulation during hypoxia. However, within an hour of recovery of the culture under normal oxygen levels, the Ung mRNA was restored. Analysis of Ung by immunoblotting and enzyme assays supported the RNA analysis results. To understand its physiological significance, we misexpressed Ung in M. smegmatis by using a hypoxia-responsive promoter of narK2 from M. tuberculosis. Although the misexpression of Ung during hypoxia decreased C-to-T mutations, it compromised bacterial survival upon recovery at normal oxygen levels. RT-PCR analysis of other base excision repair gene transcripts (UdgB and Fpg) suggested that these DNA repair functions also share with Ung the phenomenon of downregulation during hypoxia and recovery with return to normal oxygen conditions. We discuss the potential utility of this phenomenon in developing attenuated strains of mycobacteria.