905 resultados para materiais de construção e tipo de cobertura
Resumo:
The present work reports the study of nanoporous structures, aiming at their use in research directed to the current demand of the petroleum industry to value heavy oil. Initially, two ways were chosen for the synthesis of porous structures from the molecular sieves of type Si-MCM-41. In the first way, the structure MCM-41 is precursory for heteroatom substitutes of silicon, generating catalyst of the type Al-MCM-41 from two different methods of incorporation of the metal. This variation of the incorporation method of Aluminum in the structure of Si-MCM-41 was carried out through the conventional procedure, where the aluminum source was incorporated to the gel of synthesis, and the procedure post-synthesis, where the Aluminum source was incorporated in catalyst after the synthesis of Si-MCM-41. In the second way, the MCM-41 acts as a support for growth of nanocrystals of zeolite embedded in their mesoporous, resulting in hybrid MCM-41/ZSM-5 catalyst. A comparative analysis was carried through characterizations by XRD, FTIR, measures of acidity through n-butylamine adsorption for TGA, SEM-XRF and N2 adsorption. Also crystalline aluminosilicate with zeolitic structure MFI of type ZSM-5 was synthesized without using organic templates. Methodologies to the preparation of these materials are related by literature using conventionally reactants that supply oxides of necessary silicon and aluminum, as well as a template agent, and in some cases co-template. The search for new routes of preparation for the ZSM-5 aimed at, above all, the optimization of the same as for the time and the temperature of synthesis, and mainly the elimination of the use of organic templates, that are material of high cost and generally very toxic. The current study is based on the use of the H2O and Na+ cations playing the role of structural template and charge compensation in the structure. Characterizations by XRD, FTIR, SEM-XRF and N2 adsorption were also conducted for this material in order to compare the samples of ZSM-5 synthesized in the absence of template and those used industrially and synthesized using structuring
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Microporous materials zeolite type Beta and mesoporous type MCM-41 and AlMCM-41 were synthesized hydrothermally and characterized by methods of X-ray diffraction, Fourier transform infrared, scanning electron microscopy, surface acidity, nitrogen adsorption, thermal analysis TG / DTG. Also we performed a kinetic study of sunflower oil on micro and mesoporous catalysts. The microporous material zeolite beta showed a lower crystallinity due to the existence of smaller crystals and a larger number of structural defects. As for the mesoporous materials MCM-41 and AlMCM-41 samples showed formation of hexagonal one-dimensional structure. The study of kinetic behavior of sunflower oil with zeolite beta catalysts, AlMCM-41 and MCM-41 showed a lower activation energy in front of the energy of pure sunflower oil, mainly zeolite beta. In the thermal cracking and thermocatalytic of sunflower oil were obtained two liquid fractions containing an aqueous phase and another organic - organic liquid fraction (FLO). The FLO first collected in both the thermal cracking as the thermocatalytic, showed very high level of acidity, performed characterizations of physicochemical properties of the second fraction in accordance with the specifications of the ANP. The second FLO thermocatalytic collected in cracking of sunflower oil presented results in the range of diesel oil, introducing himself as a promising alternative for use as biofuel liquid similar to diesel, either instead or mixed with it
Resumo:
Oxygen carriers are metal oxides which have the ability to oxidize and reduce easily by various cycles. Due to this property these materials are widely usedin Chemical-Looping Reforming processes to produce H2 and syngas. In this work supports based on MCM-41 and La-SiO2 were synthesized by hydrothermal method. After the synthesis step they were calcined at 550°C for 2 hours and characterized by TG, XRD, surface area using the BET method and FTIR spectroscopy. The deposition of active phase, in this case Nickel, took place in the proportions of 5, 10 and 20% by weight of metallic nickel, for use as oxygen carriers.The XRD showed that increasing in the content of Ni supported on MCM-41 resulted in a decrease in spatial structure and lattice parameter of the material. The adsorption and desorption curves of the MCM-41 samples exhibited variations with the increase of Ni deposited. Surface area, average pore diameter and wall density of silica showed significant changes , due to the increase of the active phase on the mesoporous material. By other hand, in the samples with La-SiO2 composition was not observed peaks characteristic of hexagonal structure, in the XRD diffractogram. The adsorption/desorption isotherms of nitrogen observed are type IV, characteristic of mesoporous materials. The catalytic test indicates that the supports have no influence in the process, but the nickel concentration is very important, because the results for minor concentration of nickel are not good. The ratio H2/O2 was close to 2, for all 15 cycles involving the test storage capacity of O2, indicating that the materials are effective for oxygen transport
Resumo:
One of the main applications of methane is in the production of syngas, a mixture of hydrogen and carbon monoxide. Procedures used in this process are steam reforming, CO2 reforming, partial oxidation and autothermal reforming. The present study evaluated and compared the behavior of nickel catalysts supported on mixed oxides of cerium and manganese in the partial oxidation of methane with that of nickel catalysts supported on mixed oxides of cerium and zirconium. Mixed oxides of cerium and zirconium or cerium and manganese were synthesized using two different preparation methods, the polymeric precursor based on Pechini method and combustion reaction using a microwave. This was followed by impregnation with nickel content of 15 %. Samples were calcined at 300, 800 and 900 °C and characterized by specific surface area (SSA), X-ray fluorescence (XRF), X-ray diffraction (XRD), scanning electron microscopy (SEM), temperature programmed reduction (TPR) and the reaction of partial oxidation of methane. The specific areas of samples decrease with the rise in calcination temperature and after nickel impregnation. Metal-cerium solid solution was formed and the presence of other manganese species outside the solid solution structure was confirmed in the compound with the highest amounts of manganese oxides showed. With regard to scanning electron microscopy, supports based on cerium and zirconium prepared by Pechini method exhibited agglomerated particles without uniform geometry or visible pores on the surface. However, compounds containing manganese presented empty spaces in its structure. Through synthesis by combustion reaction, morphology acquired independently of the proposed composition demonstrated greater porosity in relation to Pechini synthesis. Although catalysts were prepared using different synthesis methods, the insertion of nickel showed very similar reduction profiles (TPR). In relation to nickel catalysts supported on mixed oxide of cerium and zirconium, there is an initial reduction of NiO species that present certain interaction with the support. This is followed by the reduction of Ce4+ in Ce3+ surface, with subsequent bulk reduction. For catalysts containing manganese, a reduction of nickel oxide species occurs, followed by two stages of reduction for species Mn2O3 in Mn3O4 and Mn3O4 in MnO, with subsequent reduction of bulk. With respect to partial oxidation reactions, the nickel catalyst supported on mixed oxide of cerium and zirconium, prepared using the Pechini method, exhibited CH4 conversion of approximately 80 %, with conversion of 81 % when prepared by combustion. This behavior continued for 10 hours of reaction. Manganese content was also found to directly influence catalytic activity of materials; the greater the manganese oxide content, the faster deactivation and destabilization occurred in the catalyst. In both synthesis methods, the nickel catalyst supported on mixed oxide of cerium and zirconium maintained an H2/CO ratio very close to 2 during the 10 hours of partial oxidation reaction. Samples containing manganese displayed smaller H2/CO ratios and lower performance in partial oxidation.
Resumo:
Materials consisting of perovskite-type oxides (ABO3) have been developed in this work for applications in fuel cell cathodes of solid oxide type (SOFC). These ceramic materials are widely studied for this type of application because they have excellent electrical properties, conductivity and electrocatalytic. The oxides LaMnO3, LaFeO3, LaFe0.2Mn0.8O3 e La0.5Fe0.5MnO3 were synthesized by the method of microwave assisted combustion and after sintering at 800°C in order to obtain the desired phases. The powders were characterized by thermogravimetry (TG), X-ray diffraction (XRD), X-ray fluorescence (XRF), scanning electron microscopy (SEM) and voltammetric analysis (cyclic voltammetry and polarization curves). The results obtained by XRF technique showed that the microwave synthesis method was effective in obtaining doping oxides with values near stoichiometric. In general, powders were obtained with particle size less than 0.5 μm, having a porous structure and uniform particle size distribution. The particles showed spherical form, irregular and crowded of varying sizes, according to the analysis of SEM. The behavior of the oxides opposite the thermal stability was monitored by thermogravimetric curves (TG), which showed low weight loss values for all samples, especially those of manganese had its structure. By means of Xray diffraction of the samples sintered at 800°C was possible to observe the formation of powders having high levels of crystallinity. Furthermore, undesirable phases such as La2O3 and MnOx were not identified in the diffractograms. These phases block the transport of oxygen ions in the electrode/electrolyte interface, affecting the electrochemical activity of the system. The voltammetric analysis of the electrocatalysts LF-800, LM-800, LF2M8-800 e L5F5M-800 revealed that these materials are excellent electrical conductors, because it increased the passage of electrical current of the working electrode significantly. Best performance for the oxygen reduction reaction was observed with iron-rich structures, considering that the materials obtained have characteristics suitable for use in fuel cell cathodes of solid oxide type
Resumo:
This work reports the synthesis of zeolites with different compositions (pure silica, Si/Ti and Si/Al), via hydroxide and fluoride medium using the cation 1-butyl-3- methylimidazolium as structure directing agent. Initially, the cation was synthesized in chloride form and used for the synthesis in hydroxide medium. An anion-exchange (Cl- for OH-) was required for the synthesis in fluoride medium. Different reactants were used for the formation of gels synthesis, resulting in the crystallization of MFI and TON phases, the latter predominant in many compositions. The cation and synthesized zeolites obtained were characterized by different techniques such as NMR, TG/DTG, XRD, SEM, N2 adsorption and desorption, DRS and EPMA. Besides characterizing the cation and zeolites, the mother liquor of hydroxide synthesis was characterized and it was possible to observe a modification of the cation in the synthesis conditions employed. The materials synthesized in this work can be applied in catalytic reactions and adsorption
Resumo:
The chemical recycling of polyolefins has been the focus of increasing attention owing potential application as a fuel and as source chemicals. The use of plastic waste contributes to the solution of pollution problems.The use of catalysts can enhance the thermal degradation of synthetic polymers, which may be avaliated by Themogravimetry (TG) and mass spectrometry (MS) combined techniques. This work aims to propose alternatives to the chemistry recycling of low-density polyethylene (LDPE) on mesoporous silica type SBA-15 and AlSBA-15.The mesoporous materials type SBA-15 and AlSBA-15 were synthesized through the hydrothermal method starting from TEOS, pseudobohemite, cloridric acid HCl and water. As structure template was used Pluronic P123. The syntheses were accomplished during the period of three days. The best calcination conditions for removal of the organic template (P123) were optimized by thermal analysis (TG/DTG) and through analyses of Xray diffraction (XRD), infrared spectroscopy (FT-IR), nitrogen adsorption and scanning electron microscopy (SEM) was verified that as much the hydrothermal synthesis method as the calcination by TG were promising for the production of mesoporous materials with high degree of hexagonal ordination. The general analysis of the method of Analog Scan was performed at 10oC/min to 500 oC to avoid deterioration of capillary with very high temperatures. Thus, with the results, we observed signs mass/charge more evident and, using the MID method, was obtained curve of evolution of these signals. The addition of catalysis produced a decrease in temperature of polymer degradation proportional to the acidity of the catalyst. The results showed that the mesoporous materials contributed to the formation of compounds of lower molecular weight and higher value in the process of catalytic degradation of LDPE, representing an alternative to chemical recycling of solid waste
Resumo:
Intensive use of machinery and engines burning fuel dumps into the atmosphere huge amounts of carbon dioxide (CO2), causing the intensification of the greenhouse effect. Climate changes that are occurring in the world are directly related to emissions of greenhouse gases, mainly CO2, gases, mainly due to the excessive use of fossil fuels. The search for new technologies to minimize the environmental impacts of this phenomenon has been investigated. Sequestration of CO2 is one of the alternatives that can help minimize greenhouse gas emissions. The CO2 can be captured by the post-combustion technology, by adsorption using adsorbents selective for this purpose. With this objective, were synthesized by hydrothermal method at 100 °C, the type mesoporous materials MCM - 41 and SBA-15. After the synthesis, the materials were submitted to a calcination step and subsequently functionalized with different amines (APTES, MEA, DEA and PEI) through reflux method. The samples functionalized with amines were tested for adsorption of CO2 in order to evaluate their adsorption capacities as well, were subjected to various analyzes of characterization in order to assess the efficiency of the method used for functionalization with amines. The physic-chemical techniques were used: X- ray diffraction (XRD), nitrogen adsorption and desorption (BET/BJH), scanning electron microscopy (SEM), transmission electron microscopy (TEM), CNH Analysis, Thermogravimetry (TG/DTG) and photoelectron spectroscopy X-ray (XPS). The CO2 adsorption experiments were carried out under the following conditions: 100 mg of adsorbent, at 25 °C under a flow of 100 ml/min of CO2, atmospheric pressure and the adsorption variation in time 10-210 min. The X-ray diffraction with the transmission electron micrographs for the samples synthesized and functionalized, MCM-41 and SBA-15 showed characteristic peaks of hexagonal mesoporous structure formation, showing the structure thereof was obtained. The method used was efficient reflux according to XPS and elemental analysis, which showed the presence of amines in the starting materials. The functionalized SBA -15 samples were those that had potential as best adsorbent for CO2 capture when compared with samples of MCM-41, obtaining the maximum adsorption capacity for SBA-15-P sample
Resumo:
Among the non-invasive techniques employed in the prevention of caries highlights the sealing pits and fissures which is a conservative maneuver, in order to obliterate them to protect them from attack acid bacteria. Influenced by the studies of pre-heating composite resin, which has experienced great improvement in some of their physical properties, this study aimed to evaluate in vitro the superficial and internal marginal adaptation of different materials and sealants in pre-heating or not. A total of 40 extracted human third molars (n=10) that had their occlusal surfaces prepared to receive sealant. We tested two types of sealing materials: resin sealant (Fluoroshield) and low-viscosity resin (Permaflo), where 50% of previously received heated material and the other half received sealant material at room temperature. All samples were subjected to thermal cycling and pH, simulating a cariogenic oral environment, and later were analyzed appliance OCT (optical coherence tomography). The images obtained alterations were recorded and analyzed statistically. Change was considered as the emergence of bubbles, gaps and cracks in the sealant. Comparisons of the same material, assessing the fact that it is not sealed or preheated material, as well as comparisons between different materials subjected to the same temperature were carried out. The nonparametric Tukey test was used (p < 0,05). The results showed that there was statistically significant difference between both the materials analyzed, as between the situations in which the sealant material was submitted (preheated or not). On the issue of marginal adaptation and internal surface, seen through Optical coherence tomography, may suggest that there is a difference between the use of one type or another of the sealing material analyzed, with superiority attributed to resin Permaflo compared to sealant Fluroshield, telling is the same for the different techniques used
Resumo:
O presente trabalho foi desenvolvido com o objetivo de verificar a influência de diferentes concentrações de uréia (0, 40, 60, 80, 100 e 120 g kg-1) em solução, para fornecimento de N via foliar, em diferentes horários (08h, 16h e 20h), na presença e ausência de adubação nitrogenada em cobertura (via solo). O solo do local do ensaio é do tipo Latossolo Vermelho-Escuro álico. O delineamento experimental seguiu o esquema fatorial 6x3x2, com quatro repetições. A semeadura foi realizada mecanicamente no dia 24.06.1996, utilizando-se o cultivar IAC Carioca, conduzido em regime de irrigação. Aplicaram-se 200 L ha-1 de calda, em cada pulverização com uréia. A adubação nitrogenada em cobertura foi realizada aos 32 dias após a emergência (dae), aplicando-se 40 kg ha-1 de N. Foram realizadas as seguintes avaliações: teor de agua e grau de fitotoxicidade nas folhas, número de dias para o florescimento pleno, matéria seca de plantas, teor de N total em folhas, número de vagens/planta, número de grãos/vagem, peso médio de 100 grãos e rendimento de grãos. A adubação nitrogenada em cobertura, aumentou a produtividade, o mesmo não ocorrendo com a adubação foliar. É importante a época de aplicação e a concentração da uréia foliar, devido a fitotoxicidade.
Resumo:
Some programs may have their entry data specified by formalized context-free grammars. This formalization facilitates the use of tools in the systematization and the rise of the quality of their test process. This category of programs, compilers have been the first to use this kind of tool for the automation of their tests. In this work we present an approach for definition of tests from the formal description of the entries of the program. The generation of the sentences is performed by taking into account syntactic aspects defined by the specification of the entries, the grammar. For optimization, their coverage criteria are used to limit the quantity of tests without diminishing their quality. Our approach uses these criteria to drive generation to produce sentences that satisfy a specific coverage criterion. The approach presented is based on the use of Lua language, relying heavily on its resources of coroutines and dynamic construction of functions. With these resources, we propose a simple and compact implementation that can be optimized and controlled in different ways, in order to seek satisfaction the different implemented coverage criteria. To make the use of our tool simpler, the EBNF notation for the specification of the entries was adopted. Its parser was specified in the tool Meta-Environment for rapid prototyping
Resumo:
The interval datatype applications in several areas is important to construct a interval type reusable, i.e., a interval constructor can be applied to any datatype and get intervals this datatype. Since the interval is, of certain form, a set of elements limited for two bounds, left and right, with a order notions, then it s reasonable that interval constructor enclose datatypes with partial order. On the order hand, what we want is work with interval of any datatype like this we work with this datatype then. it s important to guarantee the properties of the datatype when maps to interval of this datatype. Thus, the interval constructor get a theory to parametrized interval type, i.e., a interval with generics parameters (for example rational, real, complex). Sometimes, the interval application in some algebras doesn t guarantee the mainutenance of their properties, for example, when we use interval of real, that satisfies the field properties, it doesn t guarantee the distributivity propertie. A form to surpass this problem Santiago introduced the local equality theory that weakened the notion of strong equality, and thus, allowing some properties are local keeped, what can be discard before. The interval arithmetic generalization aim to apply the interval constructor on ordered algebras weakened for local equality with the purpose of the keep their properties. How the intervals are important in applications with continuous data, it s interesting specify that theory using a specification language that supply a system development using intervals of form disciplined, trustworth and safe. Currently, the algebraic specification language, based in math models, have been use to that intention often. We choose CASL (Common Algebraic Specification Language) among others languages because CASL has several characteristics excellent to parametrized interval type, such as, provide parcialiy and parametrization
Resumo:
The study done has as objective the comprehension of the constructed territorial spaces through the commercial perspective, because it is a social practice which enables the dynamic of the space and the appearing of territories. Related to the territory, we emphasized the interest for the idea of used territory treated by Milton Santos, because we agreed with him believing that is the use of the territory which warrants its legitimacy. Then, the spatial dimension chose concentrates itself into the district of Alecrim, localized at the east zone of Natal/RN, where it is recognized by its strong commercial dynamic which was built during years, facing some events which happened in the context of the city. However, this dynamic counts with a hard dichotomy which involves as the considered by the State formal activities, as the informal one. About the commerce of the district, it has characteristics into its activities whose make him to be considered popular, as by the existing products, as by the strong presence of informal workers that constitutes the district s landscape. The informal workers practice expresses one of the multiples constructed alternative territorialities. We believe that this fact has direct relation with the growing process of the exclusion from the formal jobs market. Still talking about the spatial dimension, this real example of the Alecrim district shows how the techniques changes, together with the capitalism process, may influence one entire spatial dynamic across years, involving many agents, since the transient people from somewhere, until the State. Shall the Geography understand the multiple forms from the space, face to the relations that occur into it and also how new territories have been built
Resumo:
A incorporação de material orgânico associada à solarização do solo é uma técnica promissora no controle de patógenos de plantas. O trabalho consistiu na prospecção de materiais vegetais promissores na produção de voláteis fungitóxicos capazes de inviabilizar as estruturas de resistência de fitopatógenos do solo. em condição de campo foram incorporados 3 Kg/m² de folhas e ramos de brócolos, eucalipto, mamona e mandioca brava, associada ou não à solarização, visando o controle de Fusarium oxysporum f. sp. lycopersici raça 2; Macrophomina phaseolina; Rhizoctonia solani AG-4 HGI e Sclerotium rolfsii. O controle foi avaliado por meio da sobrevivência das estruturas, em meios semi-seletivo específicos, aos 7, 14, 21 e 28 dias do início do experimento. Foram monitoradas as temperaturas do solo e do ar por um DataLogger Tipo CR23X (Campbell Scientific) e a porcentagem de CO2 e de O2 pelo equipamento analisador de gases (Testo 325-1). A associação da incorporação dos materiais vegetais com a solarização do solo inativou F. oxysporum f. sp. lycopersici raça 2, M. phaseolina e R. solani. O fungo S. rolfsii foi o único que não apresentou 100% de controle com solarização mais mamona durante o período estudado. A incorporação de mandioca seguido de solarização propiciou o controle de todos os fungos estudados com menos de sete dias da instalação do experimento, sendo tão eficiente quanto o brócolos na erradicação dos fitopatógenos veiculados pelo sol.