972 resultados para hardware implementation
Resumo:
Frequency hopping communications, used in the military present significant opportunities for spectrum reuse via the cognitive radio technology. We propose a MAC which incorporates hop instant identification, and supports network discovery and formation, QOS Scheduling and secondary communications. The spectrum sensing algorithm is optimized to deal with the problem of spectral leakage. The algorithms are implemented in a SDR platform based test bed and measurement results are presented.
Resumo:
Each new generation of GPUs vastly increases the resources available to GPGPU programs. GPU programming models (like CUDA) were designed to scale to use these resources. However, we find that CUDA programs actually do not scale to utilize all available resources, with over 30% of resources going unused on average for programs of the Parboil2 suite that we used in our work. Current GPUs therefore allow concurrent execution of kernels to improve utilization. In this work, we study concurrent execution of GPU kernels using multiprogram workloads on current NVIDIA Fermi GPUs. On two-program workloads from the Parboil2 benchmark suite we find concurrent execution is often no better than serialized execution. We identify that the lack of control over resource allocation to kernels is a major serialization bottleneck. We propose transformations that convert CUDA kernels into elastic kernels which permit fine-grained control over their resource usage. We then propose several elastic-kernel aware concurrency policies that offer significantly better performance and concurrency compared to the current CUDA policy. We evaluate our proposals on real hardware using multiprogrammed workloads constructed from benchmarks in the Parboil 2 suite. On average, our proposals increase system throughput (STP) by 1.21x and improve the average normalized turnaround time (ANTT) by 3.73x for two-program workloads when compared to the current CUDA concurrency implementation.
Resumo:
In a typical enterprise WLAN, a station has a choice of multiple access points to associate with. The default association policy is based on metrics such as Re-ceived Signal Strength(RSS), and “link quality” to choose a particular access point among many. Such an approach can lead to unequal load sharing and diminished system performance. We consider the RAT (Rate And Throughput) policy [1] which leads to better system performance. The RAT policy has been implemented on home-grown centralized WLAN controller, ADWISER [2] and we demonstrate that the RAT policy indeed provides a better system performance.
Resumo:
We present a nonequilibrium strong-coupling approach to inhomogeneous systems of ultracold atoms in optical lattices. We demonstrate its application to the Mott-insulating phase of a two-dimensional Fermi-Hubbard model in the presence of a trap potential. Since the theory is formulated self-consistently, the numerical implementation relies on a massively parallel evaluation of the self-energy and the Green's function at each lattice site, employing thousands of CPUs. While the computation of the self-energy is straightforward to parallelize, the evaluation of the Green's function requires the inversion of a large sparse 10(d) x 10(d) matrix, with d > 6. As a crucial ingredient, our solution heavily relies on the smallness of the hopping as compared to the interaction strength and yields a widely scalable realization of a rapidly converging iterative algorithm which evaluates all elements of the Green's function. Results are validated by comparing with the homogeneous case via the local-density approximation. These calculations also show that the local-density approximation is valid in nonequilibrium setups without mass transport.
Resumo:
In this paper we propose a fully parallel 64K point radix-4(4) FFT processor. The radix-4(4) parallel unrolled architecture uses a novel radix-4 butterfly unit which takes all four inputs in parallel and can selectively produce one out of the four outputs. The radix-4(4) block can take all 256 inputs in parallel and can use the select control signals to generate one out of the 256 outputs. The resultant 64K point FFT processor shows significant reduction in intermediate memory but with increased hardware complexity. Compared to the state-of-art implementation 5], our architecture shows reduced latency with comparable throughput and area. The 64K point FFT architecture was synthesized using a 130nm CMOS technology which resulted in a throughput of 1.4 GSPS and latency of 47.7 mu s with a maximum clock frequency of 350MHz. When compared to 5], the latency is reduced by 303 mu s with 50.8% reduction in area.
Resumo:
The correctness of a hard real-time system depends its ability to meet all its deadlines. Existing real-time systems use either a pure real-time scheduler or a real-time scheduler embedded as a real-time scheduling class in the scheduler of an operating system (OS). Existing implementations of schedulers in multicore systems that support real-time and non-real-time tasks, permit the execution of non-real-time tasks in all the cores with priorities lower than those of real-time tasks, but interrupts and softirqs associated with these non-real-time tasks can execute in any core with priorities higher than those of real-time tasks. As a result, the execution overhead of real-time tasks is quite large in these systems, which, in turn, affects their runtime. In order that the hard real-time tasks can be executed in such systems with minimal interference from other Linux tasks, we propose, in this paper, an integrated scheduler architecture, called SchedISA, which aims to considerably reduce the execution overhead of real-time tasks in these systems. In order to test the efficacy of the proposed scheduler, we implemented partitioned earliest deadline first (P-EDF) scheduling algorithm in SchedISA on Linux kernel, version 3.8, and conducted experiments on Intel core i7 processor with eight logical cores. We compared the execution overhead of real-time tasks in the above implementation of SchedISA with that in SCHED_DEADLINE's P-EDF implementation, which concurrently executes real-time and non-real-time tasks in Linux OS in all the cores. The experimental results show that the execution overhead of real-time tasks in the above implementation of SchedISA is considerably less than that in SCHED_DEADLINE. We believe that, with further refinement of SchedISA, the execution overhead of real-time tasks in SchedISA can be reduced to a predictable maximum, making it suitable for scheduling hard real-time tasks without affecting the CPU share of Linux tasks.
Resumo:
This paper presents the experimental results for an attractive control scheme implementation using an 8 bit microcontroller. The power converter involved is a 3 phase full controlled bridge rectifier. A single quadrant DC drive has been realized and results have been presented for both open and closed loop implementations.
Resumo:
This paper proposes a novel decision making framework for optimal transmission switching satisfying the AC feasibility, stability and circuit breaker (CB) reliability requirements needed for practical implementation. The proposed framework can be employed as a corrective tool in day to day operation planning scenarios in response to potential contingencies. The switching options are determined using an efficient heuristic algorithm based on DC optimal power flow, and are presented in a multi-branch tree structure. Then, the AC feasibility and stability checks are conducted and the CB condition monitoring data are employed to perform a CB reliability and line availability assessment. Ultimately, the operator will be offered multiple AC feasible and stable switching options with associated benefits. The operator can use this information, other operating conditions not explicitly considered in the optimization, and his/her own experience to implement the best and most reliable switching action(s). The effectiveness of the proposed approach is validated on the IEEE-118 bus test system. (C) 2015 Elsevier B.V. All rights reserved.
Resumo:
Graph algorithms have been shown to possess enough parallelism to keep several computing resources busy-even hundreds of cores on a GPU. Unfortunately, tuning their implementation for efficient execution on a particular hardware configuration of heterogeneous systems consisting of multicore CPUs and GPUs is challenging, time consuming, and error prone. To address these issues, we propose a domain-specific language (DSL), Falcon, for implementing graph algorithms that (i) abstracts the hardware, (ii) provides constructs to write explicitly parallel programs at a higher level, and (iii) can work with general algorithms that may change the graph structure (morph algorithms). We illustrate the usage of our DSL to implement local computation algorithms (that do not change the graph structure) and morph algorithms such as Delaunay mesh refinement, survey propagation, and dynamic SSSP on GPU and multicore CPUs. Using a set of benchmark graphs, we illustrate that the generated code performs close to the state-of-the-art hand-tuned implementations.
Resumo:
The aim of this paper is to describe the implementation of a new approach for the introduction of so called 'holonic manufacturing' principles into existing production control systems. Such an approach is intended to improve the reconfigurability of the control system to cope with the increasing requirements of production change. A conceptual architecture is described and implemented in a robot assembly cell to demonstrate that this approach can lead to a manufacturing control system which can adapt relatively simply to long-term change. A design methodology and migration strategy for achieving these solutions using conventional hardware is proposed to develop execution level of manufacturing control systems.
Resumo:
Optimal Bayesian multi-target filtering is in general computationally impractical owing to the high dimensionality of the multi-target state. The Probability Hypothesis Density (PHD) filter propagates the first moment of the multi-target posterior distribution. While this reduces the dimensionality of the problem, the PHD filter still involves intractable integrals in many cases of interest. Several authors have proposed Sequential Monte Carlo (SMC) implementations of the PHD filter. However, these implementations are the equivalent of the Bootstrap Particle Filter, and the latter is well known to be inefficient. Drawing on ideas from the Auxiliary Particle Filter (APF), a SMC implementation of the PHD filter which employs auxiliary variables to enhance its efficiency was proposed by Whiteley et. al. Numerical examples were presented for two scenarios, including a challenging nonlinear observation model, to support the claim. This paper studies the theoretical properties of this auxiliary particle implementation. $\mathbb{L}_p$ error bounds are established from which almost sure convergence follows.