894 resultados para enterprise 2.0
Resumo:
In the current economy, knowledge has been recognized to be a valuable organisational asset, a crucial factor that aids organisations to succeed in highly competitive environments. Many organisations have begun projects and special initiatives aimed at fostering better knowledge sharing amongst their employees. Not surprisingly, information technology (IT) has been a central element of many of these projects and initiatives, as the potential of emerging information technologies such as Web 2.0 for enabling the process of managing organisational knowledge is recognised. This technology could be used as a collaborative system for knowledge management (KM) within enterprises. Enterprise 2.0 is the application of Web 2.0 in an organisational context. Enterprise 2.0 technologies are web-based social software that facilitate collaboration, communication and information flow in a bidirectional manner: an essential aspect of organisational knowledge management. This chapter explains how Enterprise 2.0 technologies (Web 2.0 technologies within organisations) can support knowledge management. The chapter also explores how such technologies support the codifying (technology-centred) and social network (people-centred) approaches of KM, towards bridging the current gap between these two approaches.
Resumo:
Social software tools have become an integral part of students? personal lives and their primary communication medium. Likewise, these tools are increasingly entering the enterprise world (within the recent trend known as Enterprise 2.0) and becoming a part of everyday work routines. Aiming to keep the pace with the job requirements and also to position learning as an integral part of students? life, the field of education is challenged to embrace social software. Personal Learning Environments (PLEs) emerged as a concept that makes use of social software to facilitate collaboration, knowledge sharing, group formation around common interests, active participation and reflective thinking in online learning settings. Furthermore, social software allows for establishing and maintaining one?s presence in the online world. By being aware of a student's online presence, a PLE is better able to personalize the learning settings, e.g., through recommendation of content to use or people to collaborate with. Aiming to explore the potentials of online presence for the provision of recommendations in PLEs, in the scope of the OP4L project, we have develop a software solution that is based on a synergy of Semantic Web technologies, online presence and socially-oriented learning theories. In this paper we present the current results of this research work.
Resumo:
This paper analyses the changes which the ICT causes on a global scale. The globalization of higher education triggered by e-Learning, the emergence of e-infrastructure for e-science, the Open Educational Resources movement, e-libraries and the tendency of building global educational alliances are analysed as well. Special emphasis is put on several wellknown university models, e.g. Research University, Open University and Entrepreneurial University, as well as on some emerging university models for the Knowledge Society, such as: Global University and Innovation University. The paper puts in focus the influence of the ICTs and the new organizational and business models they bring, such as Virtual University, eCampus, Enterprise 2.0, University 2.0. A new university model is defined—the Global Campus Model. Some arguments that the ultimate result of the ICTs driven transformations could turn the whole world into a Global Campus in the next few decades.
Resumo:
In the structure of the title compound, [Mg(H2O)2(C8H6FO3)2]n(0.4H2O)n, slightly distorted octahedral MgO6 complex units have crystallographic inversion symmetry, the coordination polyhedron comprising two trans-related water molecules and four carboxyl O-atom donors, two of which are bridging. Within the two-dimensional complex polymer which is parallel to (100), the coordinating water molecules form intermolecular O---H...O hydrogen-bonds with carboxylate and phenoxy O-atom acceptors, as well as with the partial-occupancy solvent water molecules.
Resumo:
Skutterudites Fe(0.)2Co(3.8)Sb(12),Te-x (x = 0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6) were synthesized by induction melting at 1273 K, followed by annealing at 923 K for 144 h. X-ray powder diffraction and electron microprobe analysis confirmed the presence of the skutterudite phase as the main phase. The temperature-dependent transport properties were measured for all the samples from 300 to 818 K. A positive Seebeck coefficient (holes are majority carriers) was obtained in Fe0.2Co3.8Sb 12 in the whole temperature range. Thermally excited carriers changed from n-type to p-type in Fe(0.)2Co(3.8)Sb(12),Te-x 19Te0.1 at 570 K, while in all the other samples, Fe(0.)2Co(3.8)Sb(12),Te-x (x = 0.2, 0.3, 0.4, 0.5, 0.6) exhibited negative Seebeck coefficients in the entire temperature range measured. Whereas for the alloys up to x = 0.2 (Fe(0.)2Co(3.8)Sb(12),Te-x ) the electrical resistivity decreased by charge compensation, it increased for x> 0.2 with an increase in Te content as a result of an increase in the electron concentration. The thermal conductivity decreased with Te substitution owing to carrier phonon scattering and point defect scattering. The maximum dimensionless thermoelectric figure of merit, ZT = 1.04 at 818 K, was obtained with an optimized Te content for Fe0.2Co3.8Sb1 1.5Te0.5 and a carrier concentration of,,J1/ =- 3.0 x 1020 CM-3 at room temperature. Thermal expansion (a = 8.8 x 10-6 K-1), as measured for Fe(0.)2Co(3.8)Sb(12),Te-x , compared well with that of undoped Co4Sb12. A further increase in the thermoelectric figure of merit up to ZT = 1.3 at 820 K was achieved for Fe(0.)2Co(3.8)Sb(12),Te-x , applying severe plastic deformation in terms of a high-pressure torsion process. (C) 2013 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
Resumo:
The cross sections for the two antiproton-proton annihilation-in-flight modes,
ˉp + p → π+ + π-
ˉp + p → k+ + k-
were measured for fifteen laboratory antiproton beam momenta ranging from 0.72 to 2.62 GeV/c. No magnets were used to determine the charges in the final state. As a result, the angular distributions were obtained in the form [dσ/dΩ (ΘC.M.) + dσ/dΩ (π – ΘC.M.)] for 45 ≲ ΘC.M. ≲ 135°.
A hodoscope-counter system was used to discriminate against events with final states having more than two particles and antiproton-proton elastic scattering events. One spark chamber was used to record the track of each of the two charged final particles. A total of about 40,000 pictures were taken. The events were analyzed by measuring the laboratory angle of the track in each chamber. The value of the square of the mass of the final particles was calculated for each event assuming the reaction
ˉp + p → a pair of particles with equal masses.
About 20,000 events were found to be either annihilation into π ±-pair or k ±-pair events. The two different charged meson pair modes were also distinctly separated.
The average differential cross section of ˉp + p → π+ + π- varied from ~ 25 µb/sr at antiproton beam momentum 0.72 GeV/c (total energy in center-of-mass system, √s = 2.0 GeV) to ~ 2 µb/sr at beam momentum 2.62 GeV/c (√s = 2.64 GeV). The most striking feature in the angular distribution was a peak at ΘC.M. = 90° (cos ΘC.M. = 0) which increased with √s and reached a maximum at √s ~ 2.1 GeV (beam momentum ~ 1.1 GeV/c). Then it diminished and seemed to disappear completely at √s ~ 2.5 GeV (beam momentum ~ 2.13 GeV/c). A valley in the angular distribution occurred at cos ΘC.M. ≈ 0.4. The differential cross section then increased as cos ΘC.M. approached 1.
The average differential cross section for ˉp + p → k+ + k- was about one third of that of the π±-pair mode throughout the energy range of this experiment. At the lower energies, the angular distribution, unlike that of the π±-pair mode, was quite isotropic. However, a peak at ΘC.M. = 90° seemed to develop at √s ~ 2.37 GeV (antiproton beam momentum ~ 1.82 GeV/c). No observable change was seen at that energy in the π±-pair cross section.
The possible connection of these features with the observed meson resonances at 2.2 GeV and 2.38 GeV, and its implications, were discussed.
Resumo:
为了重建东亚季风区域2.5MaB.P.前后植被和气候变化的历史,更好地了解低纬度地区植被变化及其对全球变化的响应,本研究选择了南海南部ODP1143站深海沉积物中的孢粉样品进行研究。通过高分辨率(7ka)的孢粉样品的分析研究,建立起3.0~2.0MaB.P.时段南海深海沉积孢粉组合序列,系统建立了这一时段植被演替序列。在此基础上,重点研究了2.5MaB.P.前后气候变化在南海周边地区植被演替中的响应,为探索和揭示东亚古季风及古环境演变提供了孢粉学依据。 ODP 1143站位于南沙海区,北纬9º22´,东经113º17´,深海柱状样采于水深2772m的大陆坡。本研究以生物地层学和氧同位素年代学为依据建立了年龄框架,对1143站135~95m(3.0~2.6 Ma B. P.)深海沉积中的孢粉样品进行了分析,建立了3.0~2.0MaB.P.时段南海深海沉积孢粉组合序列。孢粉样品处理方法主要是用盐酸去掉钙质和氢氟酸浸泡溶解硅质后,再用筛子将样品在超声波发生器中震荡过滤。孢粉的鉴定和统计在光学透视显微镜下完成。研究结果表明: 1、孢粉谱的主要特征是沉积率变化显著。与3.0~2.6 Ma B. P. 相比,2.6~2.0 Ma B. P.各类型花粉及孢子沉积率均有显著提高。该结果表明2.6 Ma B. P.南海海平面有显著下降,可与北半球冰盖形成、东亚季风增强相对应。 2、2.6 Ma B. P.以来,各类型孢粉沉积率变化与深海氧同位素分期相对应,代表了多次冰期-间冰期旋回。该结果表明南海海平面曾有多次上升和下降。 3、频谱分析结果表明,3.0~2.0 Ma B. P.存在0.1 Ma(偏心率)和46.9ka(斜率)的周期。
Resumo:
A new polyoxometalate [Co(phen)(3)](2)[HPMo4V Mo-4(VI) V-6(IV) M2O44]center dot 4H(2)O (M = 0.78Mo(V)+ 0.22V(IV)) 1 was hydrothermally synthesized and characterized by IR, elemental analyses, X-ray photoelectron spectrum, ESR and single crystal X-ray diffraction. The title compound is in the triclinic space group P (1) over bar with a = 12.0953(7) angstrom, b = 14.0182(6) angstrom, c = 14.6468(7) angstrom, V=2402.55(18) angstrom(3), alpha = 105.134(2), beta = 91.841(3), gamma = 91.401(2), Z = 1, and R-1 (wR(2)) = 0.0617 (0.1701). The compound was prepared from tetra-capped pseudo-Kepin with phosphorus-centered polyoxoanions [PMo8V6M2O44](5-) , [Co(phen)(3)](2+) cations and linked through hydrogen bonds and pi-pi stacking interaction into three-dimensional supramolecular framework. Astudy of the magnetic properties of 1 demonstrates that it exhibits antiferromagnetic coupling interactions.
Resumo:
本文用密度泛函方法研究了LaC4n(n=-2,-1,0,+1,+2)分子簇的结构与稳定性。振动频率分析表明,在所提出的九个构型中,当n=-2,0,+1,+2时,稀土位于碳环上最稳定,而当n=-1时,尽管稀土位于碳环上能量最低,但没有找到稳定的构型,我们的结果还指出,稀土元素是分子簇中对外部环境最敏感的部位,即最具有反应活性
Resumo:
Innovation is recognized by academics and practitioners as an essential competitive enabler for any company to survive, to remain competitive and to grow. Investments in tasks of R&D have not always brought the expected results. But that doesn't mean that the outcomes would not be useful to other companies of the same business area or even from another area. Thus, there is much knowledge already available in the market that can be helpful to some and profitable to others. So, the ideas and expertise can be found outside a company's boundaries and also exported from within. Information, knowledge, experience, wisdom is already available in the millions of the human beings of this planet, the challenge is to use them through a network to produce new ideas and tips that can be useful to a company with less costs. This was the reason for the emergence of the area of crowdsourcing innovation. Crowdsourcing innovation is a way of using the Web 2.0 tools to generate new ideas through the heterogeneous knowledge available in the global network of individuals highly qualified and with easy access to information and technology. So, a crowdsourcing innovation broker is an organization that mediates the communication and relationship between the seekers - companies that aspire to solve some problem or to take advantage of any business opportunity - with a crowd that is prone to give ideas based on their knowledge, experience and wisdom. This paper makes a literature review on models of open innovation, crowdsourcing innovation, and technology and knowledge intermediaries, and discusses this new phenomenon as a way to leverage the innovation capacity of enterprises. Finally, the paper outlines a research design agendafor explaining crowdsourcing innovation brokering phenomenon, exploiting its players, main functions, value creation process, and knowledge creation in order to define a knowledge metamodel of such intermediaries.
Resumo:
Resumen tomado de la publicación
Resumo:
A new family of vanadium-substituted chromium sulfides (VxCr2-xS3, 0 < x < 2) has been prepared and characterized by powder X-ray and neutron diffraction, SQUID magnetometry, electrical resistivity, and Seebeck coefficient measurements. Vanadium substitution leads to a single-phase region with a rhombohedral Cr2S3 structure over the composition range 0.0 < x e 0.75, while at higher vanadium contents (1.6 e x < 2.0) a second single-phase region, in which materials adopt a cation-deficient Cr3S4 structure, is observed. Materials with the Cr2S3 structure all exhibit semiconducting behavior. However, both transport and magnetic properties indicate an increasing degree of electron delocalization with increasing vanadium content in this compositional region. Materials that adopt a Cr3S4-type structure exhibit metallic behavior. Magnetic susceptibility data reveal that all materials undergo a magnetic ordering transition at temperatures in the range 90–118 K. Low-temperature magnetization data suggest that this involves a transition to a ferrimagnetic state.
Resumo:
Cyclic voltammetry and ultraviolet−visible/infrared (UV−vis/IR) spectroelectrochemistry were used to study the cathodic electrochemical behavior of the osmium complexes mer-[OsIII(CO) (bpy)Cl3] (bpy = 2,2′-bipyridine) and trans(Cl)-[OsII(CO) (PrCN)(bpy)Cl2] at variable temperature in different solvents (tetrahydrofuran (THF), butyronitrile (PrCN), acetonitrile (MeCN)) and electrolytes (Bu4NPF6, Bu4NCl). The precursors can be reduced to mer-[OsII(CO) (bpy•−)Cl3]2− and trans(Cl)-[OsII(CO)(PrCN) (bpy•−)Cl2]−, respectively, which react rapidly at room temperature, losing the chloride ligands and forming Os(0) species. mer-[OsIII(CO) (bpy)Cl3] is reduced in THF to give ultimately an Os−Os-bonded polymer, probably [Os0(CO) (THF)-(bpy)]n, whereas in PrCN the well-soluble, probably mononuclear [Os0(CO) (PrCN)(bpy)], species is formed. The same products were observed for the 2 electron reduction of trans(Cl)-[OsII(CO)(PrCN) (bpy)Cl2] in both solvents. In MeCN, similar to THF, the[Os0(CO) (MeCN)(bpy)]n polymer is produced. It is noteworthy that the bpy ligand in mononuclear [Os0(CO) (PrCN)(bpy)] is reduced to the corresponding radical anion at a significantly less negative potential than it is in polymeric [Os0(CO) (THF)(bpy)]n: ΔE1/2 = 0.67 V. Major differences also exist in the IR spectra of the Os(0) species: the polymer shows a broad ν(CO) band at much smaller wavenumbers compared to the soluble Os(0) monomer that exhibits a characteristic ν(Pr-CN) band below 2200 cm−1 in addition to the intense and narrow ν(CO) absorption band. For the first time, in this work the M0-bpy(M = Ru, Os) mono- and dicarbonyl species soluble in PrCN have been formulated as a mononuclear complex. Density functional theory (DFT) and time-dependent-DFT calculations confirm the Os(0) oxidation state and suggest that [Os0(CO)(PrCN)(bpy)] is a square planar moiety. The reversible bpy-based reduction of [Os0(CO) (PrCN)(bpy)] triggers catalytic reduction of CO2 to CO and HCOO−.
Resumo:
The triply chloro-bridged binuclear complexes [Ph3X=O...H...O=XPh3][Ru2Cl7(XPh3)(2)].0.5(CH2Cl2) (H2O) (X = As or P) were obtained from [RuCl3(XPh3)(2)DMA].DMA (DMA = dimethylacetamide) CH2Cl2/Et2O solution. The structures were characterized by X-ray diffraction studies. The complexes are formed from two Ru atoms bridged by three chloride anions. The two ruthenium atoms are also coordinated to two non-bridging Cl atoms and an AsPh3 or PPh3 ligand respectively. As an interesting feature, the cations of these complexes are protons, trapped in a very short hydrogen bond between two triphenylarsine or triphenylphosphine oxide molecules.
Resumo:
The effect of Ta2O5 doping in 0.99SnO(2). 0.01CoO on the microstructure and electrical properties of this ceramic were analyzed in this study. The grain size was found to decrease from 6.87 mu m to 5.68 mu m when the Ta2O5 concentration increased from 0.050 to 0.075 mol%. DC electrical characterization showed a dramatic increase in the current loss and decrease in the non-linear coefficient with the increase of the Ta2O5 concentration. The conduction mechanism is by thermionic emission and the potential barriers are of Schottky type, separated by a thin film. (C) 2000 Kluwer Academic Publishers.