943 resultados para electron correlations
Resumo:
Plasma generated by fundamental radiation from a Nd:YAG laser focused onto a graphite target is studied spectroscopically. Measured line profiles of several ionic species were used to infer electron temperature and density at several sections located in front of the target surface. Line intensities of successive ionization states of carbon were used for electron temperature calculations. Stark broadened profiles of singly ionized species have been utilized for electron density measurements. Electron density as well as electron temperature were studied as functions of laser irradiance and time elapsed after the incidence of laser pulse. The validity of the assumption of local thermodynamic equilibrium is discussed in light of the results obtained.
Resumo:
The dielectric properties of electron beam evaporated Sm2O3 films have been investigated in the frequency range from 1 kHz to 1 MHz at various temperatures (300 K-453 K). The dielectric constant is found to depend on film thickness and it attains a constant value beyond 1000 A. The present electron beam evaporated Sm2O3 films have a high dielectric constant of 43. The frequency dependence of and tan teeta at various temperatures is also studied.
Resumo:
Electron-phonon interaction is considered within the framework of the fluctuating valence of Cu atoms. Anderson's lattice Hamiltonian is suitably modified to take this into account. Using Green's function technique tbe possible quasiparticle excitations' are determined. The quantity 2delta k(O)/ kB Tc is calculated for Tc= 40 K. The calculated values are in good agreement with the experimental results.
Resumo:
Irradiation of a Polymethyl methacrylate target using a pulsed Nd-YAG laser causes plasma formation in the vicinity of the target. The refractive index gradient due to the presence of the plasma is probed using phase-shift detection technique. The phase-shift technique is a simple but sensitive technique for the determination of laser ablation threshold of solids. The number density of laser generated plasma above the ablation threshold from Polymethyl methacrylate is calculated as a function of laser fluence. The number density varies from 2×1016 cm-3 to 2×1017 cm-3 in the fluence interval 2.8-13 J · cm-2.
Resumo:
Màster en Nanociència i Nanotecnologia curs 2006-2007. Directors: Francesca Peiró i Martínez and Jordi Arbiol i Cobos
Resumo:
An efficient method is developed for an iterative solution of the Poisson and Schro¿dinger equations, which allows systematic studies of the properties of the electron gas in linear deep-etched quantum wires. A much simpler two-dimensional (2D) approximation is developed that accurately reproduces the results of the 3D calculations. A 2D Thomas-Fermi approximation is then derived, and shown to give a good account of average properties. Further, we prove that an analytic form due to Shikin et al. is a good approximation to the electron density given by the self-consistent methods.
Resumo:
Recent measurements of electron escape from a nonequilibrium charged quantum dot are interpreted within a two-dimensional (2D) separable model. The confining potential is derived from 3D self-consistent Poisson-Thomas-Fermi calculations. It is found that the sequence of decay lifetimes provides a sensitive test of the confining potential and its dependence on electron occupation
Resumo:
We design optimal band pass filters for electrons in semiconductor heterostructures, under a uniform applied electric field. The inner cells are chosen to provide a desired transmission window. The outer cells are then designed to transform purely incoming or outgoing waves into Bloch states of the inner cells. The transfer matrix is interpreted as a conformal mapping in the complex plane, which allows us to write constraints on the outer cell parameters, from which physically useful values can be obtained.
Resumo:
This thesis entitled Geometric algebra and einsteins electron: Deterministic field theories .The work in this thesis clarifies an important part of Koga’s theory.Koga also developed a theory of the electron incorporating its gravitational field, using his substitutes for Einstein’s equation.The third chapter deals with the application of geometric algebra to Koga’s approach of the Dirac equation. In chapter 4 we study some aspects of the work of mendel sachs (35,36,37,).Sachs stated aim is to show how quantum mechanics is a limiting case of a general relativistic unified field theory.Chapter 5 contains a critical study and comparison of the work of Koga and Sachs. In particular, we conclude that the incorporation of Mach’s principle is not necessary in Sachs’s treatment of the Dirac equation.
Resumo:
The ground state structure of few-electron concentric double quantum rings is investigated within the local spin density approximation. Signatures of inter-ring coupling in the addition energy spectrum are identified and discussed. We show that the electronic configurations in these structures can be greatly modulated by the inter-ring distance: At short and long distances the low-lying electron states localize in the inner and outer rings, respectively, and the energy structure is essentially that of an isolated single quantum ring. However, at intermediate distances the electron states localized in the inner and the outer ring become quasidegenerate and a rather entangled, strongly-correlated system is formed.
Resumo:
We have investigated the dipole charge- and spin-density response of few-electron two-dimensional concentric nanorings as a function of the intensity of a erpendicularly applied magnetic field. We show that the dipole response displays signatures associated with the localization of electron states in the inner and outer ring favored by the perpendicularly applied magnetic field. Electron localization produces a more fragmented spectrum due to the appearance of additional edge excitations in the inner and outer ring.
Resumo:
We work out a semiclassical theory of shot noise in ballistic n+-i-n+ semiconductor structures aiming at studying two fundamental physical correlations coming from Pauli exclusion principle and long-range Coulomb interaction. The theory provides a unifying scheme which, in addition to the current-voltage characteristics, describes the suppression of shot noise due to Pauli and Coulomb correlations in the whole range of system parameters and applied bias. The whole scenario is summarized by a phase diagram in the plane of two dimensionless variables related to the sample length and contact chemical potential. Here different regions of physical interest can be identified where only Coulomb or only Pauli correlations are active, or where both are present with different relevance. The predictions of the theory are proven to be fully corroborated by Monte Carlo simulations.
Resumo:
Coulomb suppression of shot noise in a ballistic diode connected to degenerate ideal contacts is analyzed in terms of the correlations taking place between current fluctuations due to carriers injected with different energies. By using Monte Carlo simulations we show that at low frequencies the origin of Coulomb suppression can be traced back to the negative correlations existing between electrons injected with an energy close to that of the potential barrier present in the diode active region and all other carriers injected with higher energies. Correlations between electrons with energy above the potential barrier with the rest of electrons are found to influence significantly the spectra at high frequency in the cutoff region.