924 resultados para TRANSPARENT ELECTRODES
Resumo:
In the present work, results of the interaction between methanol and oxidized platinum surfaces as studied via transients of open-circuit potentials are presented. The surface oxidation before the exposure to interaction with 0.5 M methanol was performed at different polarization times at 1.4 V vs reversible hydrogen electrode (RHE). In spite of the small changes in the initial oxide content, the increase of the pre-polarization time induces a considerable increase of the time needed for the oxide consumption during its interaction with methanol. The influence of the identity of the chemisorbing anion on the transients was also investigated in the following media: 0.1 M HClO4, 0.5 M H2SO4, and 0.5 M H2SO4 + 0.1 mM Cl-. It was observed that the transient time increases with the energy of anion chemisorption and, more importantly, without a change in the shape of the transient, meaning that free platinum sites are available at the topmost layer all over the transient and not only in the potential region of small oxide `coverage`. The impact of the pre-polarization time and the effect of anion chemisorption on the transients are rationalized in terms of the presence of surface and subsurface oxygen driven by place exchange.
Resumo:
This work describes the development, electrochemical characterization and utilization of a cobalt phthalocyanine modified carbon nanotube electrode for the quantitative determination of dopamine in 0.2 mol L-1 phosphate buffer contaminated with high concentration of ascorbic acid. The electrode surface was analyzed by cyclic voltammetry and electrochemical impedance spectroscopy which showed a modified surface presenting a charge transfer resistance of 500 Omega, against the 16.46 k Omega value found for the bare glassy carbon surface. A pseudo rate constant value of 5.4 x 10(-4) cm s(-1) for dopamine oxidation was calculated. Voltammetric experiments showed a shift of the peak potential of DA oxidation to less positive value at 390 mV as compared with that of a bare GC electrode at 570 mV. The electrochemical determination of dopamine, in presence of ascorbic acid in concentrations up to 0.1 mol L-1 by differential pulse voltarnmetry, yielded a detection limit as low as 2.56 x 10(-7) mol L-1.
Resumo:
This work presents a cyclic voltammetry study of the polyaniline/polyluminol copolymer on platinum electrodes. The results show that under determined conditions it is possible to obtain the copolymer deposited on a metallic surface. The luminol presence clearly affects the oxidation of aniline in the nucleation process and, additionally, changes the cyclic voltammetric characteristics of the obtained material. In this aspect, the copolymer presents hybrid characteristics when compared to the polyaniline and polyluminol separately obtained and seems to present intermediary conductivity.
Resumo:
A copper phthalocyanine/multiwalled carbon nanotube film-modified glassy carbon electrode has been used for the determination of the herbicide glyphosate (Gly) at -50 mV vs. SCE by electrochemical oxidation using differential pulse voltamtnetry (DPV). Cyclic voltammetry and electrochemical impedance spectroscopy showed that Gly is adsorbed on the metallic centre of the copper phthalocyanine molecule, with formation of Gly-copper ion complexes. An analytical method was developed using DPV in pH 7.4 phosphate buffer solution, without any pretreatment steps: Gly was determined in the concentration range of 0.83-9.90 mu mol L(-1), with detection limit 12.2 nmol L(-1) (2.02 mu g L(-1))
Resumo:
In recent years, Mg-Ni-based metastable alloys have been attracting attention due to their large hydrogen sorption capacities, low weight, low cost, and high availability. Despite the large discharge capacity and high activity of these alloys, the accelerated degradation of the discharge capacity after only few cycles of charge and discharge is the main shortcoming against their commercial use in batteries. The addition of alloying elements showed to be an effective way of improving the electrode performance of Mg-Ni-based alloys. In the present work, the effect of Ti and Pt alloying elements on the structure and electrode performance of a binary Mg-Ni alloy was investigated. The XRD and HRTEM revealed that all the investigated alloy compositions had multi-phase nanostructures, with crystallite size in the range of 6 nm. Moreover, the investigated alloying elements demonstrated remarkable improvements of both maximum discharge capacity and cycling life. Simultaneous addition of Ti and Pd demonstrated a synergetic effect on the electrochemical properties of the alloy electrodes. Among the investigated alloys, the best electrochemical performance was obtained for the Mg(51)Ti(4)Ni(43)Pt(2) composition (in at.%), which achieved 448 mAh g(-1) of maximum discharge capacity and retained almost 66% of this capacity after 10 cycles. In contrast, the binary Mg(55)Ni(45) alloy achieved only 248 mAh g(-1) and retained 11% of this capacity after 10 cycles. (C) 2010 Elsevier By. All rights reserved.
Resumo:
In this report, we describe the microfabrication and integration of planar electrodes for contactless conductivity detection on polyester-toner (PT) electrophoresis microchips using toner masks. Planar electrodes were fabricated by three simple steps: (i) drawing and laser-printing the electrode geometry on polyester films, (ii) sputtering deposition onto substrates, and (iii) removal of toner layer by a lift-off process. The polyester film with anchored electrodes was integrated to PT electrophoresis microchannels by lamination at 120 degrees C in less than 1 min. The electrodes were designed in an antiparallel configuration with 750 mu m width and 750 gm gap between them. The best results were recorded with a frequency of 400 kHz and 10 V-PP using a sinusoidal wave. The analytical performance of the proposed microchip was evaluated by electrophoretic separation of potassium, sodium and lithium in 150 mu m wide x 6 mu m deep microchannels. Under an electric field of 250 V/cm the analytes were successfully separated in less than 90 s with efficiencies ranging from 7000 to 13 000 plates. The detection limits (S/N = 3) found for K+, Na+, and Li+ were 3.1, 4.3, and 7.2 mu mol/L, respectively. Besides the low-cost and instrumental simplicity, the integrated PT chip eliminates the problem of manual alignment and gluing of the electrodes, permitting more robustness and better reproducibility, therefore, more suitable for mass production of electrophoresis microchips.
Resumo:
Boron-doped diamond (BDD) films grown on the titanium substrate were used to study the electrochemical degradation of Reactive Orange (RO) 16 Dye. The films were produced by hot filament chemical vapor deposition (HFCVD) technique using two different boron concentrations. The growth parameters were controlled to obtain heavily doped diamond films. They were named as E1 and E2 electrodes, with acceptor concentrations of 4.0 and 8.0 x 10(21) atoms cm(-3), respectively. The boron levels were evaluated from Mott-Schottky plots also corroborated by Raman`s spectra, which characterized the film quality as well as its physical property. Scanning Electron Microscopy showed well-defined microcrystalline grain morphologies with crystal orientation mixtures of (1 1 1) and (1 00). The electrode efficiencies were studied from the advanced oxidation process (AOP) to degrade electrochemically the Reactive Orange 16 azo-dye (RO16). The results were analyzed by UV/VIS spectroscopy, total organic carbon (TOC) and high-performance liquid chromatography (HPLC) techniques. From UV/VIS spectra the highest doped electrode (E2) showed the best efficiency for both, the aromaticity reduction and the azo group fracture. These tendencies were confirmed by the TOC and chromatographic measurements. Besides, the results showed a direct relationship among the BDD morphology, physical property, and its performance during the degradation process. (C) 2011 Elsevier B.V. All rights reserved.
Resumo:
A new composite electrode based on multiwall carbon nanotubes (MWCNT) and silicone-rubber (SR) was developed and applied to the determination of propranolol in pharmaceutical formulations. The effect of using MWCNT/graphite mixtures in different proportions was also investigated. Cyclic voltammetry and electrochemical impedance spectroscopy were used for electrochemical characterization of different electrode compositions. Propranolol was determined using MWCNT/SR 70% (m/m) electrodes with linear dynamic ranges up to 7.0 mu molL(-1) by differential pulse and up to 5.4 mu molL(-1) by square wave voltammetry, with LODs of 0.12 and 0.078 mu molL(-1), respectively. Analysis of commercial samples agreed with that obtained by the official spectrophotometric method. The electrode is mechanically robust and presented reproducible results and a long useful life.
Resumo:
A solid graphite-polyurethane composite electrode has been used to determine release profiles of verapamil, a calcium-channel blocker. The electro-oxidation process was characterized by cyclic voltammetry and electrochemical impedance spectroscopy and showed no adsorption of analyte or oxidation products, unlike at other carbon-based electrodes. Quantification gave linear ranges up to 40molL-1 with cyclic voltammetry and detection limits of 0.7molL-1 by differential pulse and square-wave voltammetry. Commercial product samples were successfully analyzed with results equal to those from spectrophotometry. Because no electrode surface renewal is needed, this electrode material has many advantages.
Resumo:
Service-based architectures enable the development of new classes of Grid and distributed applications. One of the main capabilities provided by such systems is the dynamic and flexible integration of services, according to which services are allowed to be a part of more than one distributed system and simultaneously serve different applications. This increased flexibility in system composition makes it difficult to address classical distributed system issues such as fault-tolerance. While it is relatively easy to make an individual service fault-tolerant, improving fault-tolerance of services collaborating in multiple application scenarios is a challenging task. In this paper, we look at the issue of developing fault-tolerant service-based distributed systems, and propose an infrastructure to implement fault tolerance capabilities transparent to services.
Resumo:
It is rare for data's history to include computational processes alone. Even when software generates data, users ultimately decide to execute software procedures, choose their configuration and inputs, reconfigure, halt and restart processes, and so on. Understanding the provenance of data thus involves understanding the reasoning of users behind these decisions, but demanding that users explicitly document decisions could be intrusive if implemented naively, and impractical in some cases. In this paper, therefore, we explore an approach to transparently deriving the provenance of user decisions at query time. The user reasoning is simulated, and if the result of the simulation matches the documented decision, the simulation is taken to approximate the actual reasoning. The plausibility of this approach requires that the simulation mirror human decision -making, so we adopt an automated process explicitly modelled on human psychology. The provenance of the decision is modelled in OPM, allowing it to be queried as part of a larger provenance graph, and an OPM profile is provided to allow consistent querying of provenance across user decisions.
Resumo:
With the constant grow of enterprises and the need to share information across departments and business areas becomes more critical, companies are turning to integration to provide a method for interconnecting heterogeneous, distributed and autonomous systems. Whether the sales application needs to interface with the inventory application, the procurement application connect to an auction site, it seems that any application can be made better by integrating it with other applications. Integration between applications can face several troublesome due the fact that applications may not have been designed and implemented having integration in mind. Regarding to integration issues, two tier software systems, composed by the database tier and by the “front-end” tier (interface), have shown some limitations. As a solution to overcome the two tier limitations, three tier systems were proposed in the literature. Thus, by adding a middle-tier (referred as middleware) between the database tier and the “front-end” tier (or simply referred application), three main benefits emerge. The first benefit is related with the fact that the division of software systems in three tiers enables increased integration capabilities with other systems. The second benefit is related with the fact that any modifications to the individual tiers may be carried out without necessarily affecting the other tiers and integrated systems and the third benefit, consequence of the others, is related with less maintenance tasks in software system and in all integrated systems. Concerning software development in three tiers, this dissertation focus on two emerging technologies, Semantic Web and Service Oriented Architecture, combined with middleware. These two technologies blended with middleware, which resulted in the development of Swoat framework (Service and Semantic Web Oriented ArchiTecture), lead to the following four synergic advantages: (1) allow the creation of loosely-coupled systems, decoupling the database from “front-end” tiers, therefore reducing maintenance; (2) the database schema is transparent to “front-end” tiers which are aware of the information model (or domain model) that describes what data is accessible; (3) integration with other heterogeneous systems is allowed by providing services provided by the middleware; (4) the service request by the “frontend” tier focus on ‘what’ data and not on ‘where’ and ‘how’ related issues, reducing this way the application development time by developers.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
A general view of the electroanalytical applications of metal-salen complexes is discussed in this review. The family of Schiff bases derived from ethylenediamine and ortho-phenolic aldehydes (N,N'-ethylenebis(salicylideneiminato) - salen) and their complexes of various transition metals, such as Al, Ce, Co, Cu, Cr, Fe, Ga, Hg, Mn, Mo, Ni, and V have been used in many fields of chemical research for a wide range of applications such as catalysts for the oxygenation of organic molecules, epoxidation of alkenes, oxidation of hydrocarbons and many other catalyzed reactions; as electrocatalyst for novel sensors development; and mimicking the catalytic functions of enzymes. A brief history of the synthesis and reactivity of metal-salen complexes will be presented. The potentialities and possibilities of metal-Salen complexes modified electrodes in the development of electrochemical sensors as well as other types of sensors, their construction and methods of fabrication, and the potential application of these modified electrodes will be illustrated and discussed.
Resumo:
Phytase (myo-inositol hexaphosphate phosphohydrolase) and phytic acid (myo-inositol hexaphosphate) play an important environmental role, in addition to being a health issue in food industry. Phytic acid is antinutritional due to its ability to chelate metal ions and may also react with proteins decreasing their bioavailability. In this work, we produced biosensors with phytase immobilized in Layer-by-Layer (LbL) films, which could detect phytic acid with a detection limit of 0.19 mmol L-1, which is sufficient to detect phytic acid in seeds of grains and vegetables. The biosensosrs consisted of LbL films containing up to eight bilayers of phytase alternated with poly(allylamine) hydrochloride (PAH) deposited onto an indium-tin oxide (ITO) substrate modified with Prussian Blue. Amperometric detection was conducted in an acetate buffer solution (at pH 5.5) at room temperature, with the biosensor response attributed to the formation of phosphate ions. In subsidiary experiments with the currents measured at 0.0 V (vs. SCE), we demonstrated the absence of effects from some interferents, pointing to a good selectivity of the biosensor. (c) 2007 Elsevier B.V. All rights reserved.