1000 resultados para TMN


Relevância:

10.00% 10.00%

Publicador:

Resumo:

The significance of carbohydrate-protein interactions in many biological phenomena is now widely acknowledged and carbohydrate based pharmaceuticals are under intensive development. The interactions between monomeric carbohydrate ligands and their receptors are usually of low affinity. To overcome this limitation natural carbohydrate ligands are often organized as multivalent structures. Therefore, artificial carbohydrate pharmaceuticals should be constructed on the same concept, as multivalent carbohydrates or glycoclusters. Infections of specific host tissues by bacteria, viruses, and fungi are among the unfavorable disease processes for which suitably designed carbohydrate inhibitors represent worthy targets. The bacterium Helicobacter pylori colonizes more than half of all people worldwide, causing gastritis, gastric ulcer, and conferring a greater risk of stomach cancer. The present medication therapy for H. pylori includes the use of antibiotics, which is associated with increasing incidence of bacterial resistance to traditional antibiotics. Therefore, the need for an alternative treatment method is urgent. In this study, four novel synthesis procedures of multivalent glycoconjugates were created. Three different scaffolds representing linear (chondroitin oligomer), cyclic (γ-cyclodextrin), and globular (dendrimer) molecules were used. Multivalent conjugates were produced using the human milk type oligosaccharides LNDFH I (Lewis-b hexasaccharide), LNnT (Galβ1-4GlcNAcβ1-3Galβ1-4Glc), and GlcNAcβ1-3Galβ1-4GlcNAcβ1-3Galβ1-4Glc all representing analogues of the tissue binding epitopes for H. pylori. The first synthetic method included the reductive amination of scaffold molecules modified to express primary amine groups, and in the case of dendrimer direct amination to scaffold molecule presenting 64 primary amine groups. The second method described a direct procedure for amidation of glycosylamine modified oligosaccharides to scaffold molecules presenting carboxyl groups. The final two methods that were created both included an oxime-linkage on linkers of different length. All the new synthetic procedures synthesized had the advantage of using unmodified reducing sugars as starting material making it easy to synthesize glycoconjugates of different specificity. In addition, the binding activity of an array of neoglycolipids to H. pylori was studied. Consequently, two new neolacto-based structures, Glcβ1-3Galβ1-4GlcNAcβ1-3Galβ1-4Glcβ1-Cer and GlcAβ1-3Galβ1-4GlcNAcβ1-3Galβ1-4Glcβ1-Cer, with binding activity toward H. pylori were discovered. Interestingly, N-methyl and N-ethyl amide modification of the GlcAβ1-3Galβ1-4GlcNAcβ1-3Galβ1-4Glcβ1-Cer glucuronic acid residue resulted in more effective H. pylori binding epitopes than the parent molecule.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The pathogenesis of inflammatory rheumatic diseases, including rheumatoid arthritis (RA) and spondyloarthropathies (SpAs) such as reactive arthritis (ReA), is incompletely understood. ReA is a sterile joint inflammation, which may follow a distal infection caused by Gram-negative bacteria that have lipopolysaccharide (LPS) in their outer membrane. The functions of innate immunity that may affect the pathogenesis, prognosis and treatment of these diseases were studied in this thesis. When compared with healthy controls, whole blood monocytes of healthy subjects with previous ReA showed enhanced capacity to produce TNF, an essential proinflammatory cytokine, in response to adherent conditions (mimicking vascular endothelium made adherent by inflammatory signals) and non-specific protein kinase C stimulation. Also, blood neutrophils of these subjects showed high levels of CD11b, an important adhesion molecule, in response to adherence or LPS. Thus, high responsiveness of monocytes and neutrophils when encountering inflammatory stimuli may play a role in the pathogenesis of ReA. The results also suggested that the known risk allele for SpAs, HLA-B27, may be an additive contributor to the observed differences. The promoter polymorphisms TNF 308A and CD14 (gene for an LPS receptor component) 159T were found not to increase the risk of acute arthritis. However, all female patients who developed chronic SpA had 159T and none of them had 308A, possibly reflecting an interplay between hormonal and inflammatory signals in the development of chronic SpA. Among subjects with early RA, those having the polymorphic TLR4 +896G allele (causing the Asp299Gly change in TLR4, another component of LPS receptor) required a combination of disease-modifying antirheumatic drugs to achieve remission. It is known that rapid treatment response is essential in order to maintain the patients work ability. Hence, +896G might be a candidate marker for identifying the patients who need combination treatment. The production of vascular endothelial growth factor (VEGF), which strongly promotes vascular permeability and angiogenesis that takes place e.g. early in rheumatic joints, was induced by LPS and inhibited by interferon (IFN)-alpha in peripheral blood mononuclear cells. These long-living cells might provide a source of VEGF when stimulated by LPS and migrating to inflamed joints, and the effect of IFN-alpha may contribute to the clinical efficacy of this cytokine in inhibiting joint inflammation.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Plasma phospholipid transfer protein (PLTP) plays a crucial role in high-density lipoprotein (HDL) metabolism and reverse cholesterol transport (RCT). It mediates the generation of pre-beta-HDL particles, enhances the cholesterol efflux from peripheral cells to pre-beta-HDL, and metabolically maintains the plasma HDL levels by facilitating the transfer of post-lipolytic surface remnants of triglyceride-rich lipoproteins to HDL. In addition to the antiatherogenic properties, recent findings indicate that PLTP has also proatherogenic characteristics, and that these opposite characteristics of PLTP are dependent on the site of PLTP expression and action. In human plasma, PLTP exists in a high-activity (HA-PLTP) and a low-activity form (LA-PLTP), which are associated with macromolecular complexes of different size and composition. The aims of this thesis were to isolate the two PLTP forms from human plasma, to characterize the molecular complexes in which the HA- and LA-PLTP reside, and to study the interactions of the PLTP forms with apolipoproteins (apo) and the ability of apolipoproteins to regulate PLTP activity. In addition, we aimed to study the distribution of the two PLTP forms in a Finnish population sample as well as to find possible regulatory factors for PLTP by investigating the influence of lipid and glucose metabolism on the balance between the HA- and LA-PLTP. For these purposes, an enzyme-linked immunosorbent assay (ELISA) capable of determining the serum total PLTP concentration and quantitating the two PLTP forms separately was developed. In this thesis, it was demonstrated that the HA-PLTP isolated from human plasma copurified with apoE, whereas the LA-PLTP formed a complex with apoA-I. The separation of these two PLTP forms was carried out by a dextran sulfate (DxSO4)-CaCl2 precipitation of plasma samples before the mass determination. A similar immunoreactivity of the two PLTP forms in the ELISA could be reached after a partial sample denaturation by SDS. Among normolipidemic Finnish individuals, the mean PLTP mass was 6.6 +/- 1.5 mg/l and the mean PLTP activity 6.6 +/- 1.7 umol/ml/h. Of the serum PLTP concentration, almost 50% represented HA-PLTP. The results indicate that plasma HDL levels could regulate PLTP concentration, while PLTP activity could be regulated by plasma triglyceride-rich very low-density lipoprotein (VLDL) concentration. Furthermore, new evidence is presented that PLTP could also play a role in glucose metabolism. Finally, both PLTP forms were found to interact with apoA-I, apoA-IV, and apoE. In addition, both apoE and apoA-IV, but not apoA-I, were capable of activating the LA-PLTP. These findings suggest that the distribution of the HA- and LA-PLTP in human plasma is subject to dynamic regulation by apolipoproteins.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The highly dynamic remodeling of the actin cytoskeleton is responsible for most motile and morphogenetic processes in all eukaryotic cells. In order to generate appropriate spatial and temporal movements, the actin dynamics must be under tight control of an array of actin binding proteins (ABPs). Many proteins have been shown to play a specific role in actin filament growth or disassembly of older filaments. Very little is known about the proteins affecting recycling i.e. the step where newly depolymerized actin monomers are funneled into new rounds of filament assembly. A central protein family involved in the regulation of actin turnover is cyclase-associated proteins (CAP, called Srv2 in budding yeast). This 50-60 kDa protein was first identified from yeast as a suppressor of an activated RAS-allele and a factor associated with adenylyl cyclase. The CAP proteins harbor N-terminal coiled-coil (cc) domain, originally identified as a site for adenylyl cyclase binding. In the N-terminal half is also a 14-3-3 like domain, which is followed by central proline-rich domains and the WH2 domain. In the C-terminal end locates the highly conserved ADP-G-actin binding domain. In this study, we identified two previously suggested but poorly characterized interaction partners for Srv2/CAP: profilin and ADF/cofilin. Profilins are small proteins (12-16 kDa) that bind ATP-actin monomers and promote the nucleotide exchange of actin. The profilin-ATP-actin complex can be directly targeted to the growth of the filament barbed ends capped by Ena/VASP or formins. ADF/cofilins are also small (13-19 kDa) and highly conserved actin binding proteins. They depolymerize ADP-actin monomers from filament pointed ends and remain bound to ADP-actin strongly inhibiting nucleotide exchange. We revealed that the ADP-actin-cofilin complex is able to directly interact with the 14-3-3 like domain at the N-terminal region of Srv2/CAP. The C-terminal high affinity ADP-actin binding site of Srv2/CAP competes with cofilin for an actin monomer. Cofilin can thus be released from Srv2/CAP for the subsequent round of depolymerization. We also revealed that profilin interacts with the first proline-rich region of Srv2/CAP and that the binding occurs simultaneously with ADP-actin binding to C-terminal domain of Srv2/CAP. Both profilin and Srv2/CAP can promote nucleotide exchange of actin monomer. Because profilin has much higher affinity to ATP-actin than Srv2/CAP, the ATP-actin-profilin complex is released for filament polymerization. While a disruption of cofilin binding in yeast Srv2/CAP produces a severe phenotype comparable to Srv2/CAP deletion, an impairment of profilin binding from Srv2/CAP results in much milder phenotype. This suggests that the interaction with cofilin is essential for the function of Srv2/CAP, whereas profilin can also promote its function without direct interaction with Srv2/CAP. We also show that two CAP isoforms with specific expression patterns are present in mice. CAP1 is the major isoform in most tissues, while CAP2 is predominantly expressed in muscles. Deletion of CAP1 from non-muscle cells results in severe actin phenotype accompanied with mislocalization of cofilin to cytoplasmic aggregates. Together these studies suggest that Srv2/CAP recycles actin monomers from cofilin to profilin and thus it plays a central role in actin dynamics in both yeast and mammalian cells.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The actin cytoskeleton is essential for many cellular processes, including motility, morphogenesis, endocytosis and signal transduction. Actin can exist in monomeric (G-actin) or filamentous (F-actin) form. Actin filaments are considered to be the functional form of actin, generating the protrusive forces characteristic for the actin cytoskeleton. The structure and dynamics of the actin filament and monomer pools are regulated by a large number of actin-binding proteins in eukaryotic cells. Twinfilin is an evolutionarily conserved small actin monomer binding protein. Twinfilin is composed of two ADF/cofilin-like domains, separated by a short linker and followed by a C-terminal tail. Twinfilin forms a stable, high affinity complex with ADP-G-actin, inhibits the nucleotide exchange on actin monomers, and prevents their assembly into filament ends. Twinfilin was originally identified from yeast and has since then been found from all organisms studied except plants. Not much was known about the role of twinfilin in the actin dynamics in mammalian cells before this study. We set out to unravel the mysteries still covering twinfilins functions using biochemistry, cell biology, and genetics. We identified and characterized two mouse isoforms for the previously identified mouse twinfilin-1. The new isoforms, twinfilin-2a and -2b, are generated from the same gene through alternative promoter usage. The three isoforms have distinctive expression patterns, but are similar biochemically. Twinfilin-1 is the major isoform during development and is expressed in high levels in almost all tissues examined. Twinfilin-2a is also expressed almost ubiquitously, but at lower levels. Twinfilin-2b turned out to be a muscle-specific isoform, with very high expression in heart and skeletal muscle. It seems all mouse tissues express at least two twinfilin isoforms, indicating that twinfilins are important regulators of actin dynamics in all cell and tissue types. A knockout mouse line was generated for twinfilin-2a. The mice homozygous for this knockout were viable and developed normally, indicating that twinfilin-2a is dispensable for mouse development. However, it is important to note that twinfilin-2a shows similar expression pattern to twinfilin-1, suggesting that these proteins play redundant roles in mice. All mouse isoforms were shown to be able to sequester actin filaments and have higher affinity for ADP-G-actin than ATP-G-actin. They are also able to directly interact with heterodimeric capping protein and PI(4,5)P2 similar to yeast twinfilin. In this study we also uncovered a novel function for mouse twinfilins; capping actin filament barbed ends. All mouse twinfilin isoforms were shown to possess this function, while yeast and Drosophila twinfilin were not able to cap filament barbed ends. Twinfilins localize to the cytoplasm but also to actin-rich regions in mammalian cells. The subcellular localizations of the isoforms are regulated differently, indicating that even though twinfilins biochemical functions in vitro are very similar, in vivo they can play different roles through different regulatory pathways. Together, this study show that twinfilins regulate actin filament assembly both by sequestering actin monomers and by capping filament barbed ends, and that mammals have three biochemically similar twinfilin isoforms with partially overlapping expression patterns.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The Golgi complex is a central organelle of the secretory pathway, responsible for a range of post-translational modifications, as well as for membrane traffic to the plasma membrane and to the endosomal-lysosomal pathway. In addition, this organelle has roles in cell migration, in the regulation of traffic, and as a mitotic check point. The structure of the Golgi complex is highly dynamic and able to respond to the amount of cargo being transported and the stage of the cell cycle. The Golgi proteome reflects the functions and structure of this organelle, and can be divided into three major groups: the Golgi resident proteins (e.g. modification enzymes), the Golgi matrix proteins (involved in structure and tethering events), and trafficking proteins (e.g. vesicle coat proteins and Rabs). The Golgi proteome has been studied on several occasions, from both rat liver and mammary gland Golgi membranes using proteomic approaches, but still little more than half of the estimated Golgi proteome is known. Nevertheless, methodological improvements and introduction of shotgun proteomics have increased the number of identified proteins, and especially the number of identified transmembrane proteins. Cartilage, even though not a typical tissue in which to study membrane traffic, secretes large amounts of extracellular matrix proteins that are extensively modified, especially by amino acid hydroxylation, glycosylation and sulfation. Furthermore, the cartilage ECM contains several, large oligomeric proteins (such as collagen II) that are difficult to assemble and transport. Indeed, cartilage has been shown to be susceptible to changes both in secretory pathway (e.g. the COPII coat assembly) and in post-translational modifications (e.g. heparan sulfate formation). Dental follicle, and the periodontal ligament (PDL) that it forms, are another type of connective tissue, and they have a role in anchoring teeth to bone. This anchorage is achieved by numerous matrix fibres that connect the bone matrix with the cementum. These tissues have in common the secretion of large matrix molecules. In this study the Golgi proteome was analysed from purified, stacked Golgi membranes isolated from rat liver. The identified, extensive proteome included a protein similar to Ab2-095, or Golgi protein 49kDa (GoPro49), which was shown to localise to the Golgi complex as an EGFP fusion protein. Surprisingly, in situ hybridisation showed the GoPro49 expression to be highly restricted to different mesenchymal tissues, especially in cartilage, and this expression pattern was clearly developmentally regulated. In addition to cartilage, GoPro49 was also expressed in the dental follicle, but was not observed in the mature PDL. Importantly, GoPro49 is the first specific marker for the dental follicle. Endogenous GoPro49 protein co-localised with β-COP in both chondrosarcoma and primary dental follicle cell lines. The COPI staining in these cells was highly dynamic, showing a number of tubules. This may reflect the type of secretory cargo they secrete. Currently GoPro49 is the only Golgi protein with such a restricted expression pattern.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This thesis deals with the response of biodegradation of selected anthropogenic organic contaminants and natural autochthonous organic matter to low temperature in boreal surface soils. Furthermore, the thesis describes activity, diversity and population size of autotrophic ammonia-oxidizing bacteria (AOB) in a boreal soil used for landfarming of oil-refinery wastes, and presents a new approach, in which the particular AOB were enriched and cultivated in situ from the landfarming soil onto cation exchange membranes. This thesis demonstrates that rhizosphere fraction of natural forest humus soil and agricultural clay loam soil from Helsinki Metropolitan area were capable of degrading of low to moderate concentrations (0.2 50 µg cm-3) of PCP, phenanthrene and 2,4,5-TCP at temperatures realistic to boreal climate (-2.5 to +15 °C). At the low temperatures, the biodegradation of PCP, phenanthrene and 2,4,5-TCP was more effective (Q10-values from 1.6 to 7.6) in the rhizosphere fraction of the forest soil than in the agricultural soil. Q10-values of endogenous soil respiration (carbon dioxide evolution) and selected hydrolytic enzyme activities (acetate-esterase, butyrate-esterase and β-glucosidase) in acid coniferous forest soil were 1.6 to 2.8 at temperatures from -3 to +30 °C. The results indicated that the temperature dependence of decomposition of natural autochthonous soil organic matter in the studied coniferous forest was only moderate. The numbers of AOB in the landfarming (sandy clay loam) soil were determined with quantitative polymerase chain reaction (real-time PCR) and with Most Probable Number (MPN) methods, and potential ammonium oxidation activity was measured with the chlorate inhibition technique. The results indicated presence of large and active AOB populations in the heavily oil-contaminated and urea-fertilised landfarming soil. Assessment of the populations of AOB with denaturing gradient gel electrophoresis (DGGE) profiling and sequence analysis of PCR-amplified 16S rRNA genes showed that Nitrosospira-like AOB in clusters 2 and 3 were predominant in the oily landfarming soil. This observation was supported by fluorescence in situ hybridization (FISH) analysis of the AOB grown on the soil-incubated cation-exchange membranes. The results of this thesis expand the suggested importance of Nitrosospira-like AOB in terrestrial environments to include chronically oil-contaminated soils.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Microbial activity in soils is the main source of nitrous oxide (N2O) to the atmosphere. Nitrous oxide is a strong greenhouse gas in the troposphere and participates in ozone destructive reactions in the stratosphere. The constant increase in the atmospheric concentration, as well as uncertainties in the known sources and sinks of N2O underline the need to better understand the processes and pathways of N2O in terrestrial ecosystems. This study aimed at quantifying N2O emissions from soils in northern Europe and at investigating the processes and pathways of N2O from agricultural and forest ecosystems. Emissions were measured in forest ecosystems, agricultural soils and a landfill, using the soil gradient, chamber and eddy covariance methods. Processes responsible for N2O production, and the pathways of N2O from the soil to the atmosphere, were studied in the laboratory and in the field. These ecosystems were chosen for their potential importance to the national and global budget of N2O. Laboratory experiments with boreal agricultural soils revealed that N2O production increases drastically with soil moisture content, and that the contribution of the nitrification and denitrification processes to N2O emissions depends on soil type. Laboratory study with beech (Fagus sylvatica) seedlings demonstrated that trees can serve as conduits for N2O from the soil to the atmosphere. If this mechanism is important in forest ecosystems, the current emission estimates from forest soils may underestimate the total N2O emissions from forest ecosystems. Further field and laboratory studies are needed to evaluate the importance of this mechanism in forest ecosystems. The emissions of N2O from northern forest ecosystems and a municipal landfill were highly variable in time and space. The emissions of N2O from boreal upland forest soil were among the smallest reported in the world. Despite the low emission rates, the soil gradient method revealed a clear seasonal variation in N2O production. The organic topsoil was responsible for most of the N2O production and consumption in this forest soil. Emissions from the municipal landfill were one to two orders of magnitude higher than those from agricultural soils, which are the most important source of N2O to the atmosphere. Due to their small areal coverage, landfills only contribute minimally to national N2O emissions in Finland. The eddy covariance technique was demonstrated to be useful for measuring ecosystem-scale emissions of N2O in forest and landfill ecosystems. Overall, more measurements and integration between different measurement techniques are needed to capture the large variability in N2O emissions from natural and managed northern ecosystems.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Lakes are an important component of ecosystem carbon cycle through both organic carbon sequestration and carbon dioxide and methane emissions, although they cover only a small fraction of the Earth's surface area. Lake sediments are considered to be one of rather perma-nent sinks of carbon in boreal regions and furthermore, freshwater ecosystems process large amounts of carbon originating from terrestrial sources. These carbon fluxes are highly uncer-tain especially in the changing climate. -- The present study provides a large-scale view on carbon sources and fluxes in boreal lakes situated in different landscapes. We present carbon concentrations in water, pools in lake se-diments, and carbon gas (CO2 and CH4) fluxes from lakes. The study is based on spatially extensive and randomly selected Nordic Lake Survey (NLS) database with 874 lakes. The large database allows the identification of the various factors (lake size, climate, and catchment land use) determining lake water carbon concentrations, pools and gas fluxes in different types of lakes along a latitudinal gradient from 60oN to 69oN. Lakes in different landscapes vary in their carbon quantity and quality. Carbon (C) content (total organic and inorganic carbon) in lakes is highest in agriculture and peatland dominated areas. In peatland rich areas organic carbon dominated in lakes but in agricultural areas both organic and inorganic C concentrations were high. Total inorganic carbon in the lake water was strongly dependent on the bedrock and soil quality in the catchment, especially in areas where human influence in the catchment is low. In inhabited areas both agriculture and habitation in the catchment increase lake TIC concentrations, since in the disturbed soils both weathering and leaching are presumably more efficient than in pristine areas. TOC concentrations in lakes were related to either catchment sources, mainly peatlands, or to retention in the upper watercourses. Retention as a regulator of the TOC concentrations dominated in southern Finland, whereas the peatland sources were important in northern Finland. The homogeneous land use in the north and the restricted catchment sources of TOC contribute to the close relationship between peatlands and the TOC concentrations in the northern lakes. In southern Finland the more favorable climate for degradation and the multiple sources of TOC in the mixed land use highlight the importance of retention. Carbon processing was intensive in the small lakes. Both CO2 emission and the Holocene C pool in sediments per square meter of the lake area were highest in the smallest lakes. How-ever, because the total area of the small lakes on the areal level is limited, the large lakes are important units in C processing in the landscape. Both CO2 and CH4 concentrations and emissions were high in eutrophic lakes. High availability of nutrients and the fresh organic matter enhance degradation in these lakes. Eutrophic lakes are often small and shallow, enabling high contact between the water column and the sediment. At the landscape level, the lakes in agricultural areas are often eutrophic due to fertile soils and fertilization of the catchments, and therefore they also showed the highest CO2 and CH4 concentrations. Export from the catchments and in-lake degradation were suggested to be equally important sources of CO2 and CH4 in fall when the lake water column was intensively mixed and the transport of sub-stances from the catchment was high due to the rainy season. In the stagnant periods, especially in the winter, in-lake degradation as a gas source was highlighted due to minimal mixing and limited transport of C from the catchment. The strong relationship between the annual CO2 level of lakes and the annual precipitation suggests that climate change can have a major impact on C cycling in the catchments. Increase in precipitation enhances DOC export from the catchments and leads to increasing greenhouse gas emissions from lakes. The total annual CO2 emission from Finnish lakes was estimated to be 1400 Gg C a-1. The total lake sediment C pool in Finland was estimated to be 0.62 Pg, giving an annual sink in Finnish lakes of 65 Gg C a-1.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Aims of this thesis This study is part of a larger hare project in Finland, which provides answers to basic ecological questions regarding the mountain hare. This study of the ecology of the mountain hare focuses in particular on different levels of managed boreal forest. The feeding habits and intensity of mountain hares in winter are explored, and the connections between mountain hares versus the forest structure are also studied (e.g. habitat use and the importance of different forest layers for hares). The use of the environment by hares at the landscape level was examined (forest patch structures), and the home ranges of mountain hares were studied. Finally, the productivity and survival rate of mountain hare populations were also studied (discussion e.g. predator effects on hare populations). Conclusions Feeding intensity seemed to be highest in the spring-winter, when home ranges were also largest. Favourable food species are covered by snow in winter and the mobility of hares is highest during late winter. A shortage of suitable food species may be problematic for hares, especially during the winter period. In this study mountain hares preferred a dense shrub layer at local level and deciduous and mixed tree forest over coniferous forest at the landscape level. Food and shelter are vital for hares and the preference for particular habitats may also affect the population dynamics of the mountain hare. It would be possible to improve the quality of food and shelter or at least prevent the most negative habitat changes through forest management. At a local level it is also possible to add supplementary food for hares through the winter period. The intensive clearing of young sapling stands and especially the removal of deciduous shrubs and trees reduces the quality of habitats for the mountain hare. Mountain hares primarily live in forest habitat and it is possible that changes in the forest structure play a crucial role in mountain hare habitat preference. Ecological knowledge of the mountain hare is vital to create habitat structure more suitable for the species. More deciduous trees should be saved in managing forests and the mechanical clearing of the shrub layer should be done carefully.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Gastric cancer is the fourth most common cancer and the second most common cause of cancer-related death worldwide. Due to lack of early symptoms, gastric cancer is characterized by late stage diagnosis and unsatisfactory options for curative treatment. Several genomic alterations have been identified in gastric cancer, but the major factors contributing to initiation and progression of gastric cancer remain poorly known. Gene copy number alterations play a key role in the development of gastric cancer, and a change in gene copy number is one of the fundamental mechanisms for a cancer cell to control the expression of potential oncogenes and tumor suppressor genes. This thesis aims at clarifying the complex genomic alterations of gastric cancer to identify novel molecular biomarkers for diagnostic purposes as well as for targeted treatment. To highlight genes of potential biological and clinical relevance, we carried out a systematic microarray-based survey of gene expression and copy number levels in primary gastric tumors and gastric cancer cell lines. Results were validated using immunohistochemistry, real-time qRT-PCR, and affinity capture-based transcript (TRAC) assay. Altogether 192 clinical gastric tissue samples and 7 gastric cancer cell lines were included in this study. Multiple chromosomal regions with recurrent copy number alterations were detected. The most frequent chromosomal alterations included gains at 7q, 8q, 17q, 19q, and 20q and losses at 9p, 18q, and 21q. Distinctive patterns of copy number alterations were detected for different histological subtypes (intestinal and diffuse) and for cancers located in different parts of the stomach. The impact of copy number alterations on gene expression was significant, as 6-10% of genes located in the regions of gains and losses also showed concomitant alterations in their expression. By combining the information from the DNA- and RNA-level analyses many novel gastric cancer-related genes, such as ALPK2, ENAH, HHIPL2, and OSMR, were identified. Independent genome-wide gene expression analysis of Finnish and Japanese gastric tumors revealed an additional set of genes that was differentially expressed in cancerous gastric tissues compared with normal tissue. Overexpression of one of these genes, CXCL1, was associated with an improved survival of gastric cancer. Thus, using an integrative microarray analysis, several novel genes were identified that may be critically important for gastric carcinogenesis. Further studies of these genes may lead to novel biomarkers for gastric cancer diagnosis and targeted therapy.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The basis of this work was the identification of a genomic region on chromosome 7p14-p15 that strongly associated with asthma and high serum total immunoglobulin E in a Finnish founder population from Kainuu. Using a hierarchical genotyping approach the linkage region was narrowed down until an evolutionary collectively inherited 133-kb haplotype block was discovered. The results were confirmed in two independent data sets: Asthma families from Quebec and allergy families from North-Karelia. In all the three cohorts studied, single nucleotide polymorphisms tagging seven common gene variants (haplotypes) were identified. Over half of the asthma patients carried three evolutionary closely related susceptibility haplotypes as opposed to approximately one third of the healthy controls. The risk effects of the gene variants varied from 1.4 to 2.5. In the disease-associated region, there was one protein-coding gene named GPRA (G Protein-coupled Receptor for Asthma susceptibility also known as NPSR1) which displayed extensive alternative splicing. Only the two isoforms with distinct intracellular tail sequences, GPRA-A and -B, encoded a full-length G protein-coupled receptor with seven transmembrane regions. Using various techniques, we showed that GPRA is expressed in multiple mucosal surfaces including epithelial cells throughout the respiratory tract. GPRA-A has additional expression in respiratory smooth muscle cells. However, in bronchial biopsies with unknown haplotypes, GPRA-B was upregulated in airways of all patient samples in contrast to the lack of expression in controls. Further support for GPRA as a common mediator of inflammation was obtained from a mouse model of ovalbumin-induced inflammation, where metacholine-induced airway hyperresponsiveness correlated with elevated GPRA mRNA levels in the lung and increased GPRA immunostaining in pulmonary macrophages. A novel GPRA agonist, Neuropeptide S (NPS), stimulated phagocytosis of Esterichia coli bacteria in a mouse macrophage cell line indicating a role for GPRA in the removal of inhaled allergens. The suggested GPRA functions prompted us to study, whether GPRA haplotypes associate with respiratory distress syndrome (RDS) and bronchopulmonary dysplasia (BPD) in infants sharing clinical symptoms with asthma. According to the results, near-term RDS and asthma may also share the same susceptibility and protective GPRA haplotypes. As in asthma, GPRA-B isoform expression was induced in bronchial smooth muscle cells in RDS and BPD suggesting a role for GPRA in bronchial hyperresponsiveness. In conclusion, the results of the present study suggest that the dysregulation of the GPRA/NPS pathway may not only be limited to the individuals carrying the risk variants of the gene but is also involved in the regulation of immune functions of asthma.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Wound healing is a complex process that requires an interplay between several cell types. Classically, fibroblasts have been viewed as producers of extracellular matrix, but more recently they have been recognized as orchestrators of the healing response, promoting and directing, inflammation and neovascularization processes. Compared to those from healthy tissue, inflammation-associated fibroblasts display a dramatically altered phenotype and have been described as sentinel cells, able to switch to an immunoregulatory profile on cue. However, the activation mechanism still remains largely uncharacterized. Nemosis is a model for stromal fibroblast activation. When normal human primary fibroblasts are deprived of growth support they cluster, forming multicellular spheroids. Clustering results in upregulation of proinflammatory markers such as cyclooxygenase-2 and secretion of prostaglandins, proteinases, cytokines, and growth factors. Fibroblasts in nemosis induce wound healing and tumorigenic responses in many cell types found in inflammatory and tumor microenvironments. This study investigated the effect of nemotic fibroblasts on two components of the vascular system, leukocytes and endothelium, and characterized the inflammation-promoting responses that arose in these cell types. Fibroblasts in nemosis were found to secrete an array of chemotactic cytokines and attract leukocytes, as well as promote their adhesion to the endothelium. Nuclear factor-kB, the master regulator of many inflammatory responses, is activated in nemotic fibroblasts. Nemotic fibroblasts are known to produce large amounts of hepatocyte growth factor, a motogenic and angiogenic factor. Also, as shown in this study, they produce vascular endothelial growth factor. These two factors induced migratory and sprouting responses in endothelial cells, both required for neovascularization. Nemotic fibroblasts also caused a decrease in the expression of adherens and tight junction components on the surface of endothelial cells. The results allow the conclusion that fibroblasts in nemosis share many similarities with inflammation-associated fibroblasts. Both inflammation and stromal fibroblasts are known to be involved in tumorigenesis and tumor progression. Nemosis may be viewed as a model for stromal fibroblast activation, or it may correlate with cell-cell interactions between adjacent fibroblasts in vivo. Nevertheless, due to nemosis-derived production of proinflammatory cytokines and growth factors, fibroblast nemosis may have therapeutic potential as an inducer of controlled tissue repair. Knowledge of stromal fibroblast activation gained through studies of nemosis, could provide new strategies to control unwanted inflammation and tumor progression.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Pectin is a natural polymer consisting mainly of D-galacturonic acid monomers. Microorganisms living on decaying plant material can use D-galacturonic acid for growth. Although bacterial pathways for D-galacturonate catabolism had been described previously, no eukaryotic pathway for D-galacturonate catabolism was known at the beginning of this work. The aim of this work was to identify such a pathway. In this thesis the pathway for D-galacturonate catabolism was identified in the filamentous fungus Trichoderma reesei. The pathway consisted of four enzymes: NADPH-dependent D-galacturonate reductase (GAR1), L-galactonate dehydratase (LGD1), L-threo-3-deoxy-hexulosonate aldolase (LGA1) and NADPH-dependent glyceraldehyde reductase (GLD1). In this pathway D-galacturonate was converted to pyruvate and glycerol via L-galactonate, L-threo-3-deoxy-hexulosonate and L-glyceraldehyde. The enzyme activities of GAR1, LGD1 and LGA1 were present in crude mycelial extract only when T. reesei was grown on D-galacturonate. The activity of GLD1 was equally present on all the tested carbon sources. The corresponding genes were identified either by purifying and sequencing the enzyme or by expressing genes with homology to other similar enzymes in a heterologous host and testing the activities. The new genes that were identified were expressed in Saccharomyces cerevisiae and resulted in active enzymes. The GAR1, LGA1 and GLD1 were also produced in S. cerevisiae as active enzymes with a polyhistidine-tag, and purified and characterised. GAR1 and LGA1 catalysed reversible reactions, whereas only the forward reactions were observed for LGD1 and GLD1. When gar1, lgd1 or lga1 was deleted in T. reesei the deletion strain was unable to grow with D-galacturonate as the only carbon source, demonstrating that all the corresponding enzymes were essential for D-galacturonate catabolism and that no alternative D-galacturonate pathway exists in T. reesei. A challenge for biotechnology is to convert cheap raw materials to useful and more valuable products. Filamentous fungi are especially useful for the conversion of pectin, since they are efficient producers of pectinases. Identification of the fungal D-galacturonate pathway is of fundamental importance for the utilisation of pectin and its conversion to useful products.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

ORP2 is a member of mammalian oxysterol binding protein (OSBP)-related protein/gene family (ORPs), which is found in almost every eukaryotic organism. ORPs have been suggested to participate in the regulation of cellular lipid metabolism, vesicle trafficking and cellular signaling. ORP2 is a cytosolic protein that is ubiquitously expressed and most abundant in the brain. In previous studies employing stable cell lines with constitutive ORP2 overexpression ORP2 was shown to affect cellular cholesterol metabolism. The aim of this study was to characterize the properties and function of ORP2 further. ORP2 ligands were searched for among sterols and phosphoinositides using purified ORP2 and in vitro binding assays. As expected, ORP2 bound several oxysterols and cholesterol, the highest affinity ligand being 22(R)hydroxycholesterol. In addition, affinity for anionic membrane phospholipids, phosphoinositides was observed, which may assist in the membrane targeting of ORP2. Intracellular localization of ORP2 was also investigated. ORP2 was observed on the surface of cytoplasmic lipid droplets, which are storage organelles for neutral lipids. Lipid droplet targeting of ORP2 was inhibited when 22(R)hydroxycholesterol was added to the cells or when the N-terminal FFAT-motif of ORP2 was mutated, suggesting that oxysterols and the N-terminus of ORP2 regulate the localization and the function of ORP2. The role of ORP2 in cellular lipid metabolism was studied using HeLa cell lines that can be induced to overexpress ORP2. Overexpression of ORP2 was shown to enhance cholesterol efflux from the cells resulting in a decreased amount of cellular free cholesterol. ORP2 overexpressing cells responded to the loss of cholesterol by upregulating cholesterol synthesis and uptake. Intriguingly, also cholesterol esterification was increased in ORP2 overexpressing cells. These results may be explained by the ability of ORP2 to bind and thus transport cholesterol, which most likely leads to changes in cholesterol metabolism when ORP2 is overexpressed. ORP2 function was further investigated by silencing the endogenous ORP2 expression with short interfering RNAs (siRNA) in A431 cells. Silencing of ORP2 led to a delayed break-down of triglycerides under lipolytic conditions and an increased amount of cholesteryl esters in the presence of excess triglycerides. Together these results suggest that ORP2 is a sterol-regulated protein that functions on the surface of cytoplasmic lipid droplets to regulate the metabolism of triglycerides and cholesteryl esters. Although the exact mode of ORP2 action still remains unclear, this study serves as a good basis to investigate the molecular mechanisms and possible cell type specific functions of ORP2.