816 resultados para Smart devices
Resumo:
Pocket Data Mining (PDM) is our new term describing collaborative mining of streaming data in mobile and distributed computing environments. With sheer amounts of data streams are now available for subscription on our smart mobile phones, the potential of using this data for decision making using data stream mining techniques has now been achievable owing to the increasing power of these handheld devices. Wireless communication among these devices using Bluetooth and WiFi technologies has opened the door wide for collaborative mining among the mobile devices within the same range that are running data mining techniques targeting the same application. This paper proposes a new architecture that we have prototyped for realizing the significant applications in this area. We have proposed using mobile software agents in this application for several reasons. Most importantly the autonomic intelligent behaviour of the agent technology has been the driving force for using it in this application. Other efficiency reasons are discussed in details in this paper. Experimental results showing the feasibility of the proposed architecture are presented and discussed.
Resumo:
Collaborative mining of distributed data streams in a mobile computing environment is referred to as Pocket Data Mining PDM. Hoeffding trees techniques have been experimentally and analytically validated for data stream classification. In this paper, we have proposed, developed and evaluated the adoption of distributed Hoeffding trees for classifying streaming data in PDM applications. We have identified a realistic scenario in which different users equipped with smart mobile devices run a local Hoeffding tree classifier on a subset of the attributes. Thus, we have investigated the mining of vertically partitioned datasets with possible overlap of attributes, which is the more likely case. Our experimental results have validated the efficiency of our proposed model achieving promising accuracy for real deployment.
Resumo:
Distributed and collaborative data stream mining in a mobile computing environment is referred to as Pocket Data Mining PDM. Large amounts of available data streams to which smart phones can subscribe to or sense, coupled with the increasing computational power of handheld devices motivates the development of PDM as a decision making system. This emerging area of study has shown to be feasible in an earlier study using technological enablers of mobile software agents and stream mining techniques [1]. A typical PDM process would start by having mobile agents roam the network to discover relevant data streams and resources. Then other (mobile) agents encapsulating stream mining techniques visit the relevant nodes in the network in order to build evolving data mining models. Finally, a third type of mobile agents roam the network consulting the mining agents for a final collaborative decision, when required by one or more users. In this paper, we propose the use of distributed Hoeffding trees and Naive Bayes classifers in the PDM framework over vertically partitioned data streams. Mobile policing, health monitoring and stock market analysis are among the possible applications of PDM. An extensive experimental study is reported showing the effectiveness of the collaborative data mining with the two classifers.
Resumo:
Pocket Data Mining (PDM) describes the full process of analysing data streams in mobile ad hoc distributed environments. Advances in mobile devices like smart phones and tablet computers have made it possible for a wide range of applications to run in such an environment. In this paper, we propose the adoption of data stream classification techniques for PDM. Evident by a thorough experimental study, it has been proved that running heterogeneous/different, or homogeneous/similar data stream classification techniques over vertically partitioned data (data partitioned according to the feature space) results in comparable performance to batch and centralised learning techniques.
Resumo:
E-reading devices such as The Kindle have rapidly secured a significant place in a number of societies as at least one major platform for reading. To some extent they are part of the overarching move towards a fully digitised world but they have a distinctiveness in being deliberately “book-like”. Teachers generally have some suspicion towards “New Media”, especially when it challenges their established practice and nothing dominates the school more than the physical book. What may be the challenges but also the benefits of e-readers to teachers and students? What may be the particular challenges to those teachers who are, traditionally, the guardians of the book, that is the teachers of mother tongue literature? This article reports on a survey of English teachers in England to gauge their reactions to e-readers, both personally and professionally and describes their speculations about the place of e-readers in schools in the future. There is a mixed reaction with some teachers concerned about the demise of the book and the potential negative impact on reading. However, the majority welcome e-readers as a dynamic element within the reading environment with particular potential to enthuse reluctant readers and those with special or linguistic needs. They also, some grudgingly, view the fact that reading using this form of technology appeals to the “e-generation” and may succeed in making reading “cool”. This form of technology is, ironically (given that it appears to threaten traditional books) likely to be rapidly adopted in classrooms.
Resumo:
The introduction of multimedia on pervasive and mobile communication devices raises a number of perceptual quality issues. However, limited work has been done examining the 3-way interaction between use of equipment, user perceptual quality and quality of service. Our work measures user perceptual quality with the quality of perception (QoP) metrics which comprises levels of informational transfer (objective) and user satisfaction (subjective) when users are presented with multimedia video clips at three different frame rates, using four different display devices. Finally, our results will show that variation in frame-rate does not impact a user’s level of information assimilation (IA), however, does impact a users’ perception of multimedia video ‘quality’.
Resumo:
Purpose – The aim of this paper is to present a conceptual valuation framework to allow telecare service stakeholders to assess telecare devices in the home in terms of their social, psychological and practical effects. The framework enables telecare service operators to more effectively engage with the social and psychological issues resulting from telecare technology deployment in the home and to design and develop appropriate responses as a result. Design/methodology/approach – The paper provides a contextual background for the need for sociologically pitched tools that engage with the social and cultural feelings of telecare service users before presenting the valuation framework and how it could be used. Findings – A conceptual valuation framework is presented for potential development/use. Research limitations/implications – The valuation framework has yet to be extensively tested or verified. Practical implications – The valuation framework needs to be tested and deployed by a telecare service operator but the core messages of the paper are valid and interesting for readership. Social implications – In addressing the social and cultural perspectives of telecare service stakeholders, the paper makes a link between the technologies in the home, the feelings and orientations of service users (e.g. residents, emergency services, wardens, etc.) and the telecare service operator. Originality/value – The paper is an original contribution to the field as it details how the sociological orientations of telecare technology service users should be valued and addressed by service operators. It has a value through the conceptual arguments made and through valuation framework presented.
Resumo:
A parallel pipelined array of cells suitable for real-time computation of histograms is proposed. The cell architecture builds on previous work obtained via C-slow retiming techniques and can be clocked at 65 percent faster frequency than previous arrays. The new arrays can be exploited for higher throughput particularly when dual data rate sampling techniques are used to operate on single streams of data from image sensors. In this way, the new cell operates on a p-bit data bus which is more convenient for interfacing to camera sensors or to microprocessors in consumer digital cameras.
Resumo:
As low carbon technologies become more pervasive, distribution network operators are looking to support the expected changes in the demands on the low voltage networks through the smarter control of storage devices. Accurate forecasts of demand at the single household-level, or of small aggregations of households, can improve the peak demand reduction brought about through such devices by helping to plan the appropriate charging and discharging cycles. However, before such methods can be developed, validation measures are required which can assess the accuracy and usefulness of forecasts of volatile and noisy household-level demand. In this paper we introduce a new forecast verification error measure that reduces the so called “double penalty” effect, incurred by forecasts whose features are displaced in space or time, compared to traditional point-wise metrics, such as Mean Absolute Error and p-norms in general. The measure that we propose is based on finding a restricted permutation of the original forecast that minimises the point wise error, according to a given metric. We illustrate the advantages of our error measure using half-hourly domestic household electrical energy usage data recorded by smart meters and discuss the effect of the permutation restriction.
Resumo:
Collectively small and medium sized enterprises (SMEs) are significant energy users although many are unregulated by existing policies due to their low carbon emissions. Carbon reduction is often not a priority but smart grids may create a new opportunity. A smart grid will give electricity suppliers a picture of real-time energy flows and the opportunity for consumers to receive financial incentives for engaging in demand side management. As well as creating incentives for local carbon reduction, engaging SMEs with smart grids has potential for contributing to wider grid decarbonisation. Modelling of buildings, business activities and technology solutions is needed to identify opportunities for carbon reduction. The diversity of the SME sector complicates strategy development. SMEs are active in almost every business area and occupy the full range of property types. This paper reviews previous modelling work, exposing valuable data on floor space and energy consumption associated with different business activities. Limitations are seen with the age of this data and an inability to distinguish SME energy use. By modelling SME energy use, electrical loads are identified which could be shifted on demand, in a smart network. Initial analysis of consumption, not constrained by existing policies, identifies heating and cooling in retail and commercial offices as having potential for demand response. Hot water in hotel and catering and retail sectors may also be significant because of the energy storage potential. Areas to consider for energy efficiency schemes are also indicated.
Resumo:
Our aim was to generate and prove the concept of "smart" plants to monitor plant phosphorus (P) status in Arabidopsis. Smart plants can be genetically engineered by transformation with a construct containing the promoter of a gene up-regulated specifically by P starvation in an accessible tissue upstream of a marker gene such as beta-glucuronidase (GUS). First, using microarrays, we identified genes whose expression changed more than 2.5-fold in shoots of plants growing hydroponically when P, but not N or K, was withheld from the nutrient solution. The transient changes in gene expression occurring immediately (4 h) after P withdrawal were highly variable, and many nonspecific, shock-induced genes were up-regulated during this period. However, two common putative cis-regulatory elements (a PHO-like element and a TATA box-like element) were present significantly more often in the promoters of genes whose expression increased 4 h after the withdrawal of P compared with their general occurrence in the promoters of all genes represented on the microarray. Surprisingly, the expression of only four genes differed between shoots of P-starved and -replete plants 28 h after P was withdrawn. This lull in differential gene expression preceded the differential expression of a new group of 61 genes 100 h after withdrawing P. A literature survey indicated that the expression of many of these "late" genes responded specifically to P starvation. Shoots had reduced P after 100 h, but growth was unaffected. The expression of SQD1, a gene involved in the synthesis of sulfolipids, responded specifically to P starvation and was increased 100 h after withdrawing P. Leaves of Arabidopsis bearing a SQD1::GUS construct showed increased GUS activity after P withdrawal, which was detectable before P starvation limited growth. Hence, smart plants can monitor plant P status. Transferring this technology to crops would allow precision management of P fertilization, thereby maintaining yields while reducing costs, conserving natural resources, and preventing pollution.
Resumo:
Owing to continuous advances in the computational power of handheld devices like smartphones and tablet computers, it has become possible to perform Big Data operations including modern data mining processes onboard these small devices. A decade of research has proved the feasibility of what has been termed as Mobile Data Mining, with a focus on one mobile device running data mining processes. However, it is not before 2010 until the authors of this book initiated the Pocket Data Mining (PDM) project exploiting the seamless communication among handheld devices performing data analysis tasks that were infeasible until recently. PDM is the process of collaboratively extracting knowledge from distributed data streams in a mobile computing environment. This book provides the reader with an in-depth treatment on this emerging area of research. Details of techniques used and thorough experimental studies are given. More importantly and exclusive to this book, the authors provide detailed practical guide on the deployment of PDM in the mobile environment. An important extension to the basic implementation of PDM dealing with concept drift is also reported. In the era of Big Data, potential applications of paramount importance offered by PDM in a variety of domains including security, business and telemedicine are discussed.
Resumo:
The Universal Serial Bus (USB) is an extremely popular interface standard for computer peripheral connections and is widely used in consumer Mass Storage Devices (MSDs). While current consumer USB MSDs provide relatively high transmission speed and are convenient to carry, the use of USB MSDs has been prohibited in many commercial and everyday environments primarily due to security concerns. Security protocols have been previously proposed and a recent approach for the USB MSDs is to utilize multi-factor authentication. This paper proposes significant enhancements to the three-factor control protocol that now makes it secure under many types of attacks including the password guessing attack, the denial-of-service attack, and the replay attack. The proposed solution is presented with a rigorous security analysis and practical computational cost analysis to demonstrate the usefulness of this new security protocol for consumer USB MSDs.