996 resultados para Sacka, Ron


Relevância:

10.00% 10.00%

Publicador:

Resumo:

This study examines the effects of an atmospheric pressure plasma (APP) pre-treatment on the shrink resistance of wool fabric treated subsequently, by the pad/dry method, with an aqueous emulsion of the amino-functional polydimethylsiloxane, SM 8709. Optimal shrink resistance (with no impairment of fabric handle) was obtained after a low-level plasma treatment (1-3 s exposure time), using 5% of the polymer emulsion. Higher levels of silicone polymer could be used to achieve shrink resistance in the absence of a plasma pre-treatment, but the fabric handle would be adversely affected. X-ray photoelectron spectroscopy (XPS) studies showed that the bulk of the covalently bound surface lipid layer was removed after a plasma exposure time of 30 s. For treatment times of 3 s or less, however, the removal was incomplete, suggesting that optimum shrink resistance (after treatment with the silicone polymer) was associated with the modification of the surface layer rather than its complete destruction. Scanning electron micrographs (SEMs) revealed that the plasma pre-treatment did not lead to any physical modifications (such as smoothening of the scale edges), even for long exposure times, and had no significant impact on the extent or nature of the inter-fibre bonding of the polymer. Confocal microscopy showed uniform spread of polymer on single fibres. It is concluded that the main impact of the plasma pre-treatment was to enhance the distribution of polymer both on and between fibres and to improve adhesion of polymer to the fibre.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

It is widely accepted that wild aquatic birds are the major reservoir for Avian Influenza viruses (AIV), and also play a significant role as vectors for the disease. However, despite intensive surveillance, we still know very little about the role individual wild birds (and their populations) play in the transmission and maintenance of these viruses. Traditionally, combinations of single-location surveillance and historical migration patterns have been used to estimate the degree to which different species may be involved. However, this broad scale approach tends to neglect the ecology of the virus, and just as importantly, the ecology of the host. Over 100 species have been found infected with these viruses worldwide, with many more purportedly negative for the disease. Using data from ten years of wild bird surveillance in the Netherlands we catalogued the ecological properties of each species sampled, in order to determine whether infected species are ecologically separated from those that are not. Using stable isotope analysis of feathers and blood components, we also examine whether infection risk of individuals within a species known to be infected by AIV can be attributable to antecedent foraging habitats. The use of an aquatic habitat is strongly associated with infection risk at all levels analysed, including individuals and populations of a single species, and between species. These unique findings underscore the usefulness of stable isotope methods in disease ecology, particularly when compared to broader-scale inter-species patterns, and the potential role of host ecology in transmission and maintenance of AIV.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Atmospheric pressure plasma treatment of wool fabric, with a relatively short exposure time, effectively removed the covalently bonded lipid layer from the wool surface. The plasma-treated fabric showed increased wettability and the fibres showed greater roughness. X-ray photoelectron spectroscopy (XPS) analysis showed a much more hydrophilic surface with significant increases in oxygen and nitrogen concentrations and a decrease in carbon concentration. Adhesion, as measured by scanning probe microscopy (SPM) force volume analysis, also increased, consistent with the more hydrophilic surface leading to a greater meniscus force on the SPM probe. The ageing of fibres from the plasma-treated fabric was assessed over a period of 28 days. While no physical changes were observed, the chemical nature of the surface changed significantly. XPS showed a decrease in the hydrophilic nature of the surface with time, consistent with the measured decrease in wettability. This change is proposed to be due to the reorientation of proteolipid chains. SPM adhesion studies also showed the surface to be changing with time. After ageing for 28 days, the plasma-treated surface was relatively stable and still dramatically different from the untreated fibre, suggesting that the oxidation of the surface and modification or removal of the lipid layer were permanent.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Individual variation in infection modulates both the dynamics of pathogens and their impact on host populations. It is therefore crucial to identify differential patterns of infection and understand the mechanisms responsible. Yet our understanding of infection heterogeneity in wildlife is limited, even for important zoonotic host-pathogen systems, owing to the intractability of host status prior to infection. Using novel applications of stable isotope ecology and eco-immunology, we distinguish antecedent behavioural and physiological traits associated with avian influenza virus (AIV) infection in free-living Bewick's swans (Cygnus columbianus bewickii). Swans infected with AIV exhibited higher serum δ13C (-25.3 ± 0.4) than their non-infected counterparts (-26.3±0.2). Thus, individuals preferentially foraging in aquatic rather than terrestrial habitats experienced a higher risk of infection, suggesting that the abiotic requirements of AIV give rise to heterogeneity in pathogen exposure. Juveniles were more likely to be infected (30.8% compared with 11.3% for adults), shed approximately 15-fold higher quantity of virus and exhibited a lower specific immune response than adults. Together, these results demonstrate the potential for heterogeneity in infection to have a profound influence on the dynamics of pathogens, with concomitant impacts on host habitat selection and fitness.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Mitochondrial DNA (mtDNA) can be a powerful genetic marker for tracing origins and history of invasive populations. Here, we use mtDNA to address questions relevant to the understanding of invasion pathways of common starlings (Sturnus vulgaris) into Western Australia (WA) and discuss the utility of this marker to provide information useful to invasive species management. Mitochondrial sequence data indicate two geographically restricted genetic groups within Australia. Evidence of dispersal from genetically distinct sources outside the sampled range of starlings in Australia suggests increased vigilance by management agencies may be required to prevent further incursions from widely separated localities. Overall, genetic diversity in Australia was lower than in samples from the native range. Within Australia, genetic diversity was lowest in the most recently colonized area in the west, indicating that demographic bottlenecks have occurred in this area. Evidence of restricted dispersal between localities on the edge of the range expansion (ERE) in WA and other Australian sampling localities suggests that localized control within the ERE may be effective in preventing further range expansion. Signatures of spatial and demographic expansion are present in mismatch analyses from sampling localities located at the ERE, but neutrality indices did not support this finding, suggesting that the former may be more sensitive to recent expansion. Additionally, mismatch analyses support the presence of admixture, which is likely to have occurred pre-introduction. We compare our findings with those from a microsatellite study of the same samples and discuss how the mtDNA analyses used here offer valuable and unique insights into the invasion history of introduced species.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Invasive species are known to cause environmental and economic damage, requiring management by control agencies worldwide. These species often become well established in new environments long before their detection, resulting in a lack of knowledge regarding their history and dynamics. When new invasions are discovered, information regarding the source and pathway of the invasion, and the degree of connectivity with other populations can greatly benefit management strategies. Here we use invasive common starling (Sturnus vulgaris) populations from Australia to demonstrate that genetic techniques can provide this information to aid management, even when applied to highly vagile species over continental scales. Analysis of data from 11 microsatellites in 662 individuals sampled at 17 localities across their introduced range in Australia revealed four populations. One population consisted of all sampling sites from the expansion front in Western Australia, where control efforts are focused. Despite evidence of genetic exchange over both contemporary and historical timescales, gene flow is low between this population and all three more easterly populations. This suggests that localized control of starlings on the expansion front may be an achievable goal and the long-standing practice of targeting select proximal eastern source populations may be ineffective on its own. However, even with low levels of gene flow, successful control of starlings on the expansion front will require vigilance, and genetic monitoring of this population can provide essential information to managers. The techniques used here are broadly applicable to invasive populations worldwide.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Ensifer (Sinorhizobium) medicae is an effective nitrogen fixing microsymbiont of a diverse range of annual Medicago (medic) species. Strain WSM419 is an aerobic, motile, non-spore forming, Gram-negative rod isolated from a M. murex root nodule collected in Sardinia, Italy in 1981. WSM419 was manufactured commercially in Australia as an inoculant for annual medics during 1985 to 1993 due to its nitrogen fixation, saprophytic competence and acid tolerance properties. Here we describe the basic features of this organism, together with the complete genome sequence, and annotation. This is the first report of a complete genome sequence for a microsymbiont of the group of annual medic species adapted to acid soils. We reveal that its genome size is 6,817,576 bp encoding 6,518 protein-coding genes and 81 RNA only encoding genes. The genome contains a chromosome of size 3,781,904 bp and 3 plasmids of size 1,570,951, 1,245,408 and 219,313 bp. The smallest plasmid is a feature unique to this medic microsymbiont.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Rhizobium leguminosarum bv. trifolii is the effective nitrogen fixing microsymbiont of a diverse range of annual and perennial Trifolium (clover) species. Strain WSM2304 is an aerobic, motile, non-spore forming, Gram-negative rod isolated from Trifolium polymorphum in Uruguay in 1998. This microsymbiont predominated in the perennial grasslands of Glencoe Research Station, in Uruguay, to competitively nodulate its host, and fix atmospheric nitrogen. Here we describe the basic features of WSM2304, together with the complete genome sequence, and annotation. This is the first completed genome sequence for a nitrogen fixing microsymbiont of a clover species from the American centre of origin. We reveal that its genome size is 6,872,702 bp encoding 6,643 protein-coding genes and 62 RNA only encoding genes. This multipartite genome was found to contain 5 distinct replicons; a chromosome of size 4,537,948 bp and four circular plasmids of size 4,537,948, 1,266,105, 501,946, 308,747 and 257,956 bp.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Rhizobium leguminosarum bv trifolii is a soil-inhabiting bacterium that that has the capacity to be an effective nitrogen fixing microsymbiont of a diverse range of annual Trifolium (clover) species. Strain WSM1325 is an aerobic, motile, non-spore forming, Gram-negative rod isolated from root nodules collected in 1993 from the Greek Island of Serifos. WSM1325 is manufactured commercially in Australia as an inoculant for a broad range of annual clovers of Mediterranean origin due to its superior attributes of saprophytic competence, nitrogen fixation and acid-tolerance. Here we describe the basic features of this organism, together with the complete genome sequence, and annotation. This is the first completed genome sequence for a microsymbiont of annual clovers. We reveal that its genome size is 7,418,122 bp encoding 7,232 protein-coding genes and 61 RNA-only encoding genes. This multipartite genome contains 6 distinct replicons; a chromosome of size 4,767,043 bp and 5 plasmids of size 828,924, 660,973, 516,088, 350,312 and 294,782 bp.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This study analysed a series of negotiation simulations conducted between English-speaking background Australians and Arabic-speaking background Gulf Cooperation Council (G.C.C.) nationals. The processes and behaviours of participants within their own cultures and across the two cultures were mapped and explained using prevalent cross-cultural communication theories.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This paper studies efficient learning with respect to mind changes. Our starting point is the idea that a learner that is efficient with respect to mind changes minimizes mind changes not only globally in the entire learning problem, but also locally in subproblems after receiving some evidence. Formalizing this idea leads to the notion of uniform mind change optimality. We characterize the structure of language classes that can be identified with at most α mind changes by some learner (not necessarily effective): A language class L is identifiable with α mind changes iff the accumulation order of L is at most α. Accumulation order is a classic concept from point-set topology. To aid the construction of learning algorithms, we show that the characteristic property of uniformly mind change optimal learners is that they output conjectures (languages) with maximal accumulation order. We illustrate the theory by describing mind change optimal learners for various problems such as identifying linear subspaces and one-variable patterns.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We define a concept of inclusion depth (see Definition 1) to capture mind-change complexity [3,1] of pattern identification problems [2]. Our basic question is whether the inclusion depth for any pattern is computable. We conjecture a combinatorial characterization that, if true, leads to a linear time algorithm to compute inclusion depth.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This study presents morphological and molecular data on hookworms from the Australian fur seal Arctocephalus pusillus doriferus (Schreber) currently identified in Australian waters as Uncinaria hamiltoni Baylis, 1933. Additional specimens from the Australian sea lion Neophoca cinerea (Péron) and the New Zealand fur seal Arctocephalus forsteri (Lesson) from Australia, and the Southern elephant seal Mirounga leonina (Linnaeus) from Antarctica, were included. Using the internal transcribed spacer (ITS), hookworms from A. p. doriferus, N. cinerea and A. forsteri were found to be genetically similar but distinct from Uncinaria spp. found in M. leonina from Antarctica, as well as from Zalophus californianus (Lesson) and Callorhinus ursinus (Linnaeus) from California. Few morphological differences were detected between these taxa.