881 resultados para Reverse Salient
Resumo:
Camera calibration information is required in order for multiple camera networks to deliver more than the sum of many single camera systems. Methods exist for manually calibrating cameras with high accuracy. Manually calibrating networks with many cameras is, however, time consuming, expensive and impractical for networks that undergo frequent change. For this reason, automatic calibration techniques have been vigorously researched in recent years. Fully automatic calibration methods depend on the ability to automatically find point correspondences between overlapping views. In typical camera networks, cameras are placed far apart to maximise coverage. This is referred to as a wide base-line scenario. Finding sufficient correspondences for camera calibration in wide base-line scenarios presents a significant challenge. This thesis focuses on developing more effective and efficient techniques for finding correspondences in uncalibrated, wide baseline, multiple-camera scenarios. The project consists of two major areas of work. The first is the development of more effective and efficient view covariant local feature extractors. The second area involves finding methods to extract scene information using the information contained in a limited set of matched affine features. Several novel affine adaptation techniques for salient features have been developed. A method is presented for efficiently computing the discrete scale space primal sketch of local image features. A scale selection method was implemented that makes use of the primal sketch. The primal sketch-based scale selection method has several advantages over the existing methods. It allows greater freedom in how the scale space is sampled, enables more accurate scale selection, is more effective at combining different functions for spatial position and scale selection, and leads to greater computational efficiency. Existing affine adaptation methods make use of the second moment matrix to estimate the local affine shape of local image features. In this thesis, it is shown that the Hessian matrix can be used in a similar way to estimate local feature shape. The Hessian matrix is effective for estimating the shape of blob-like structures, but is less effective for corner structures. It is simpler to compute than the second moment matrix, leading to a significant reduction in computational cost. A wide baseline dense correspondence extraction system, called WiDense, is presented in this thesis. It allows the extraction of large numbers of additional accurate correspondences, given only a few initial putative correspondences. It consists of the following algorithms: An affine region alignment algorithm that ensures accurate alignment between matched features; A method for extracting more matches in the vicinity of a matched pair of affine features, using the alignment information contained in the match; An algorithm for extracting large numbers of highly accurate point correspondences from an aligned pair of feature regions. Experiments show that the correspondences generated by the WiDense system improves the success rate of computing the epipolar geometry of very widely separated views. This new method is successful in many cases where the features produced by the best wide baseline matching algorithms are insufficient for computing the scene geometry.
Resumo:
Excessive grazing pressure is detrimental to plant productivity and may lead to declines in soil organic matter. Soil organic matter is an important source of plant nutrients and can enhance soil aggregation, limit soil erosion, and can also increase cation exchange and water holding capacities, and is, therefore, a key regulator of grassland ecosystem processes. Changes in grassland management which reverse the process of declining productivity can potentially lead to increased soil C. Thus, rehabilitation of areas degraded by overgrazing can potentially sequester atmospheric C. We compiled data from the literature to evaluate the influence of grazing intensity on soil C. Based on data contained within these studies, we ascertained a positive linear relationship between potential C sequestration and mean annual precipitation which we extrapolated to estimate global C sequestration potential with rehabilitation of overgrazed grassland. The GLASOD and IGBP DISCover data sets were integrated to generate a map of overgrazed grassland area for each of four severity classes on each continent. Our regression model predicted losses of soil C with decreased grazing intensity in drier areas (precipitation less than 333 mm yr(-1)), but substantial sequestration in wetter areas. Most (93%) C sequestration potential occurred in areas with MAP less than 1800 mm. Universal rehabilitation of overgrazed grasslands can sequester approximately 45 Tg C yr(-1), most of which can be achieved simply by cessation of overgrazing and implementation of moderate grazing intensity. Institutional level investments by governments may be required to sequester additional C.
Resumo:
Interactional competence has emerged as a focal point for language testing researchers in recent years. In spoken communication involving two or more interlocutors, the co-construction of discourse is central to successful interaction. The acknowledgement of co-construction has led to concern over the impact of the interlocutor and the separability of performances in speaking tests involving interaction. The purpose of this article is to review recent studies of direct relevance to the construct of interactional competence and its operationalisation by raters in the context of second language speaking tests. The review begins by tracing the emergence of interaction as a criterion in speaking tests from a theoretical perspective, and then focuses on research salient to interactional effectiveness that has been carried out in the context of language testing interviews and group and paired speaking tests.
Resumo:
Using data from 2004 to 2008, we find that an audit committee is an important monitoring mechanism as audit committee independence, expertise and size are associated with reduced levels of abnormal accruals, our measure of earnings management. This study also attempts to discern when the monitoring role of the audit committee is more salient for the firm. We find that ownership concentration and the presence of government officials on the audit committee are important determinants of the negative association between audit committee characteristics and earnings management. In contrast, we find no significant associations between the audit committee and abnormal accruals for Chinese firms listed only on the Chinese domestic Stock Exchanges. The paper contributes to the corporate governance literature in a transitional economy. Identifying the role of audit committees of firms listed on markets other than the domicile market demonstrates the importance of considering the institutional setting in governance research.
Resumo:
The nature of the relationship that is negotiated, developed and maintained between a clinical supervisor and supervisee is central to effectively engage in clinical work, to promote professional and personal development, and to ensure consistent ethical practice. In this chapter attention is given to the challenges, importance and benefits of the supervisory relationship. The ability to form and sustain relationships in supervision and in clinical practice is more crucial than specific knowledge and therapeutic skills (Dye, 2004). Attention to parallel process, the working alliance, multiple roles, expectations and acculturative issues are addressed. This is an introduction to some of the most salient issues concerning the supervisory relationship and is a review of concepts and processes discussed in greater depth throughout this textbook. The reader is encouraged to utilise the references and suggested readings to deepen their understanding of the supervisory relationship.
Resumo:
This overview focuses on the application of chemometrics techniques for the investigation of soils contaminated by polycyclic aromatic hydrocarbons (PAHs) and metals because these two important and very diverse groups of pollutants are ubiquitous in soils. The salient features of various studies carried out in the micro- and recreational environments of humans, are highlighted in the context of the various multivariate statistical techniques available across discipline boundaries that have been effectively used in soil studies. Particular attention is paid to techniques employed in the geosciences that may be effectively utilized for environmental soil studies; classical multivariate approaches that may be used in isolation or as complementary methods to these are also discussed. Chemometrics techniques widely applied in atmospheric studies for identifying sources of pollutants or for determining the importance of contaminant source contributions to a particular site, have seen little use in soil studies, but may be effectively employed in such investigations. Suitable programs are also available for suggesting mitigating measures in cases of soil contamination, and these are also considered. Specific techniques reviewed include pattern recognition techniques such as Principal Components Analysis (PCA), Fuzzy Clustering (FC) and Cluster Analysis (CA); geostatistical tools include variograms, Geographical Information Systems (GIS), contour mapping and kriging; source identification and contribution estimation methods reviewed include Positive Matrix Factorisation (PMF), and Principal Component Analysis on Absolute Principal Component Scores (PCA/APCS). Mitigating measures to limit or eliminate pollutant sources may be suggested through the use of ranking analysis and multi criteria decision making methods (MCDM). These methods are mainly represented in this review by studies employing the Preference Ranking Organisation Method for Enrichment Evaluation (PROMETHEE) and its associated graphic output, Geometrical Analysis for Interactive Aid (GAIA).
Resumo:
Reading and writing are being transformed by global changes in communication practices using new media technologies. This paper introduces iPed, a research-based pedagogy that enables teachers to navigate innovative digital text production in the literacy classroom. The pedagogy was generated in the context of a longitudinal digital literacy intervention in a school that services low-socioeconomic and ethnically diverse students. iPed synthesizes four key pedagogies that were salient in the analysis of over 180 hours of lesson observations – Link, Challenge, Co-Create, and Share. The strengths of the pedagogy include connecting to students’ home cultures, critical media literacy, collaborative and creative digital text production, and gaining cosmopolitan recognition within global communities.
Resumo:
Banana leaf streak disease, caused by several species of Banana streak virus (BSV), is widespread in East Africa. We surveyed for this disease in Uganda and Kenya, and used rolling-circle amplification (RCA) to detect the presence of BSV in banana. Six distinct badnavirus sequences, three from Uganda and three from Kenya, were amplified for which only partial sequences were previously available. The complete genomes were sequenced and characterised. The size and organisation of all six sequences was characteristic of other badnaviruses, including conserved functional domains present in the putative polyprotein encoded by open reading frame (ORF) 3. Based on nucleotide sequence analysis within the reverse transcriptase/ribonuclease H-coding region of open reading frame 3, we propose that these sequences be recognised as six new species and be designated as Banana streak UA virus, Banana streak UI virus, Banana streak UL virus, Banana streak UM virus, Banana streak CA virus and Banana streak IM virus. Using PCR and species-specific primers to test for the presence of integrated sequences, we demonstrated that sequences with high similarity to BSIMV only were present in several banana cultivars which had tested negative for episomal BSV sequences.
Resumo:
Driver distraction is a research area that continues to receive considerable research interest but the drivers’ perspective is less well documented. The current research focuses on how drivers perceive the risks associated with a range of driver distractions with the aim of identifying features that contribute to their risk perception judgements. Multidimensional scaling analysis was employed to better understand drivers’ risk perceptions for 15 in-vehicle and external distractions. Results identify both salient qualitative characteristics that underpin drivers’ risk perceptions, such as the probability of a crash, as well as identify other features inherent in the distractions that may also contribute to risk perceptions. The implications of the results are discussed for better understanding drivers’ perceptions of distractions and the potential for improving road safety messages related to distracted driving.
Resumo:
The workplace is evolving and the predicted impact of demographic changes (Salt, 2009; Taylor, 2005) has seen organisations focus on strategic workforce planning. As part of this, many organisations have established or expanded formalised graduate programs to attract graduates and transition them effectively into organisations (McDermott, Mangan, & O'Connor, 2005; Terjesen, Freeman, & Vinnicombe, 2007). The workplace context is also argued to be changing because of the divergence in preferences and priorities across the different generations in the workplace - a topic which is prolific in the popular culture media but is yet to be fully developed in the academic literature (Jorgenson, 2003). The public sector recruits large numbers of graduates and maintains well established graduate programs. Like the workplace context, the public sector is seen to be undergoing a transition to more closely align its practices and processes with that of the private sector (Haynes & Melville Jones, 1999; N. Preston, 1995). Consequently, questions have been raised as to how new workforce entrants see the public sector and its associated attractiveness as an employment option. This research draws together these issues and reviews the formation of, and change in, the psychological contracts of graduates across ten Queensland public sector graduate programs. To understand the employment relationship, the theories of psychological contract and public service motivation are utilised. Specifically, this research focuses on graduates' and managers' expectations over time, the organisational perspective of the employment relationship and how ideology influences graduates' psychological contract. A longitudinal mixed method design, involving individual interviews and surveys, is employed along with significant researcher-practitioner collaboration throughout the research process. A number of important qualitative and quantitative findings arose from this study and there was strong triangulation between results from the two methods. Prior to starting with the organisation, graduates found it difficult to articulate their expectations; however, organisational experience rapidly brought these to the fore. Of the expectations that became salient, most centred on their relationship with their supervisor. Without experience and quality information on which to base their expectations, graduates tended to over-rely on sectoral stereotypes which negatively impacted their psychological contracts. Socialisation only limited affected graduates' psychological contracts and public service motivation. The graduate survey, measured thrice throughout the first 12 months of the graduate program, revealed that the psychological contract and public service motivation results followed a similar trajectory of beginning at mediocre levels, declining between times one and two and increasing between times two and three (although this is not back to original levels). Graduates attributed these to a number of sectoral, organisational, team, supervisory and individual factors. On a theoretical level, this research provides support for the notion of ideology within the psychological contract although it raises some important questions about how it is conceptualised. Additionally, support is given for the manager to be seen as the primary organisational counterpart to the employee in future theoretical and practical work. The research also argues to extend current notions of time within the psychological contract as this seems to be the most divergent and combustible issue across the generations in terms of how the workplace is perceived. A number of practical implications also transpire from the study and the collaborative foundation was highly successful. It is anticipated that this research will make a meaningful contribution to both the theory and practice of the employment relationship with particular regard to graduates entering the public sector.
Resumo:
OBJECTIVE: The accurate quantification of human diabetic neuropathy is important to define at-risk patients, anticipate deterioration, and assess new therapies. ---------- RESEARCH DESIGN AND METHODS: A total of 101 diabetic patients and 17 age-matched control subjects underwent neurological evaluation, neurophysiology tests, quantitative sensory testing, and evaluation of corneal sensation and corneal nerve morphology using corneal confocal microscopy (CCM). ---------- RESULTS: Corneal sensation decreased significantly (P = 0.0001) with increasing neuropathic severity and correlated with the neuropathy disability score (NDS) (r = 0.441, P < 0.0001). Corneal nerve fiber density (NFD) (P < 0.0001), nerve fiber length (NFL), (P < 0.0001), and nerve branch density (NBD) (P < 0.0001) decreased significantly with increasing neuropathic severity and correlated with NDS (NFD r = −0.475, P < 0.0001; NBD r = −0.511, P < 0.0001; and NFL r = −0.581, P < 0.0001). NBD and NFL demonstrated a significant and progressive reduction with worsening heat pain thresholds (P = 0.01). Receiver operating characteristic curve analysis for the diagnosis of neuropathy (NDS >3) defined an NFD of <27.8/mm2 with a sensitivity of 0.82 (95% CI 0.68–0.92) and specificity of 0.52 (0.40–0.64) and for detecting patients at risk of foot ulceration (NDS >6) defined a NFD cutoff of <20.8/mm2 with a sensitivity of 0.71 (0.42–0.92) and specificity of 0.64 (0.54–0.74). ---------- CONCLUSIONS: CCM is a noninvasive clinical technique that may be used to detect early nerve damage and stratify diabetic patients with increasing neuropathic severity. Established diabetic neuropathy leads to pain and foot ulceration. Detecting neuropathy early may allow intervention with treatments to slow or reverse this condition (1). Recent studies suggested that small unmyelinated C-fibers are damaged early in diabetic neuropathy (2–4) but can only be detected using invasive procedures such as sural nerve biopsy (4,5) or skin-punch biopsy (6–8). Our studies have shown that corneal confocal microscopy (CCM) can identify early small nerve fiber damage and accurately quantify the severity of diabetic neuropathy (9–11). We have also shown that CCM relates to intraepidermal nerve fiber loss (12) and a reduction in corneal sensitivity (13) and detects early nerve fiber regeneration after pancreas transplantation (14). Recently we have also shown that CCM detects nerve fiber damage in patients with Fabry disease (15) and idiopathic small fiber neuropathy (16) when results of electrophysiology tests and quantitative sensory testing (QST) are normal. In this study we assessed corneal sensitivity and corneal nerve morphology using CCM in diabetic patients stratified for the severity of diabetic neuropathy using neurological evaluation, electrophysiology tests, and QST. This enabled us to compare CCM and corneal esthesiometry with established tests of diabetic neuropathy and define their sensitivity and specificity to detect diabetic patients with early neuropathy and those at risk of foot ulceration.
Resumo:
This article reports on a research program that has developed new methodologies for mapping the Australian blogosphere and tracking how information is disseminated across it. The authors improve on conventional web crawling methodologies in a number of significant ways: First, the authors track blogging activity as it occurs, by scraping new blog posts when such posts are announced through Really Simple Syndication (RSS) feeds. Second, the authors use custom-made tools that distinguish between the different types of content and thus allow us to analyze only the salient discursive content provided by bloggers. Finally, the authors are able to examine these better quality data using both link network mapping and textual analysis tools, to produce both cumulative longer term maps of interlinkages and themes, and specific shorter term snapshots of current activity that indicate current clusters of heavy interlinkage and highlight their key themes. In this article, the authors discuss findings from a yearlong observation of the Australian political blogosphere, suggesting that Australian political bloggers consistently address current affairs, but interpret them differently from mainstream news outlets. The article also discusses the next stage of the project, which extends this approach to an examination of other social networks used by Australians, including Twitter, YouTube, and Flickr. This adaptation of our methodology moves away from narrow models of political communication, and toward an investigation of everyday and popular communication, providing a more inclusive and detailed picture of the Australian networked public sphere.
Resumo:
With regard to the long-standing problem of the semantic gap between low-level image features and high-level human knowledge, the image retrieval community has recently shifted its emphasis from low-level features analysis to high-level image semantics extrac- tion. User studies reveal that users tend to seek information using high-level semantics. Therefore, image semantics extraction is of great importance to content-based image retrieval because it allows the users to freely express what images they want. Semantic content annotation is the basis for semantic content retrieval. The aim of image anno- tation is to automatically obtain keywords that can be used to represent the content of images. The major research challenges in image semantic annotation are: what is the basic unit of semantic representation? how can the semantic unit be linked to high-level image knowledge? how can the contextual information be stored and utilized for image annotation? In this thesis, the Semantic Web technology (i.e. ontology) is introduced to the image semantic annotation problem. Semantic Web, the next generation web, aims at mak- ing the content of whatever type of media not only understandable to humans but also to machines. Due to the large amounts of multimedia data prevalent on the Web, re- searchers and industries are beginning to pay more attention to the Multimedia Semantic Web. The Semantic Web technology provides a new opportunity for multimedia-based applications, but the research in this area is still in its infancy. Whether ontology can be used to improve image annotation and how to best use ontology in semantic repre- sentation and extraction is still a worth-while investigation. This thesis deals with the problem of image semantic annotation using ontology and machine learning techniques in four phases as below. 1) Salient object extraction. A salient object servers as the basic unit in image semantic extraction as it captures the common visual property of the objects. Image segmen- tation is often used as the �rst step for detecting salient objects, but most segmenta- tion algorithms often fail to generate meaningful regions due to over-segmentation and under-segmentation. We develop a new salient object detection algorithm by combining multiple homogeneity criteria in a region merging framework. 2) Ontology construction. Since real-world objects tend to exist in a context within their environment, contextual information has been increasingly used for improving object recognition. In the ontology construction phase, visual-contextual ontologies are built from a large set of fully segmented and annotated images. The ontologies are composed of several types of concepts (i.e. mid-level and high-level concepts), and domain contextual knowledge. The visual-contextual ontologies stand as a user-friendly interface between low-level features and high-level concepts. 3) Image objects annotation. In this phase, each object is labelled with a mid-level concept in ontologies. First, a set of candidate labels are obtained by training Support Vectors Machines with features extracted from salient objects. After that, contextual knowledge contained in ontologies is used to obtain the �nal labels by removing the ambiguity concepts. 4) Scene semantic annotation. The scene semantic extraction phase is to get the scene type by using both mid-level concepts and domain contextual knowledge in ontologies. Domain contextual knowledge is used to create scene con�guration that describes which objects co-exist with which scene type more frequently. The scene con�guration is represented in a probabilistic graph model, and probabilistic inference is employed to calculate the scene type given an annotated image. To evaluate the proposed methods, a series of experiments have been conducted in a large set of fully annotated outdoor scene images. These include a subset of the Corel database, a subset of the LabelMe dataset, the evaluation dataset of localized semantics in images, the spatial context evaluation dataset, and the segmented and annotated IAPR TC-12 benchmark.
Resumo:
While in many travel situations consumers have an almost limitless range of destinations to choose from, their actual decision set will usually only comprise between two and six destinations. One of the greatest challenges facing destination marketers is positioning their destination, against the myriad of competing places that offer similar features, into consumer decision sets. Since positioning requires a narrow focus, marketing communications must present a succinct and meaningful proposition, the selection of which is often problematic for destination marketing organisations (DMO), which deal with a diverse and often eclectic range of attributes in addition to numerous self-interested and demanding stakeholders. This paper reports the application of two qualitative techniques used to explore the range of cognitive attributes, consequences and personal values that represent potential positioning opportunities in the context of short break holidays. The Repertory Test is an effective technique for understanding the salient attributes used by a traveller to differentiate destinations, while Laddering Analysis enables the researcher to explore the smaller set of personal values guiding such decision making. A key finding of the research was that while individuals might vary in their repertoire of salient attributes, there was a commonality of shared consequences and values.
Resumo:
The two adjacent genes of coat protein 1 and 2 of rice tungro spherical virus (RTSV) were amplified from total RNA extracts of serologically indistinguishable field isolates from the Philippines and Indonesia, using reverse transcriptase polymerase chain reaction (RT-PCR). Digestion with HindIII and BstYI restriction endonucleases differentiated the amplified DNA products into eight distinct coat protein genotypes. These genotypes were then used as indicators of virus diversity in the field. Inter- and intra-site diversities were determined over three cropping seasons. At each of the sites surveyed, one or two main genotypes prevailed together with other related minor or mixed genotypes that did not replace the main genotype over the sampling time. The cluster of genotypes found at the Philippines sites was significantly different from the one at the Indonesia sites, suggesting geographic isolation for virus populations. Phylogenetic studies based on the nucleotide sequences of 38 selected isolates confirm the spatial distribution of RTSV virus populations but show that gene flow may occur between populations. Under the present conditions, rice varieties do not seem to exert selective pressure on the virus populations. Based on the selective constraints in the coat protein amino acid sequences and the virus genetic composition per site, a negative selection model followed by random-sampling events due to vector transmissions is proposed to explain the inter-site diversity observed