816 resultados para Recurrent Neural Networks


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Ellipsometry is a well known optical technique used for the characterization of reflective surfaces in study and films between two media. It is based on measuring the change in the state of polarization that occurs as a beam of polarized light is reflected from or transmitted through the film. Measuring this change can be used to calculate parameters of a single layer film such as the thickness and the refractive index. However, extracting these parameters of interest requires significant numerical processing due to the noninvertible equations. Typically, this is done using least squares solving methods which are slow and adversely affected by local minima in the solvable surface. This thesis describes the development and implementation of a new technique using only Artificial Neural Networks (ANN) to calculate thin film parameters. The new method offers a speed in the orders of magnitude faster than preceding methods and convergence to local minima is completely eliminated.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The great interest in nonlinear system identification is mainly due to the fact that a large amount of real systems are complex and need to have their nonlinearities considered so that their models can be successfully used in applications of control, prediction, inference, among others. This work evaluates the application of Fuzzy Wavelet Neural Networks (FWNN) to identify nonlinear dynamical systems subjected to noise and outliers. Generally, these elements cause negative effects on the identification procedure, resulting in erroneous interpretations regarding the dynamical behavior of the system. The FWNN combines in a single structure the ability to deal with uncertainties of fuzzy logic, the multiresolution characteristics of wavelet theory and learning and generalization abilities of the artificial neural networks. Usually, the learning procedure of these neural networks is realized by a gradient based method, which uses the mean squared error as its cost function. This work proposes the replacement of this traditional function by an Information Theoretic Learning similarity measure, called correntropy. With the use of this similarity measure, higher order statistics can be considered during the FWNN training process. For this reason, this measure is more suitable for non-Gaussian error distributions and makes the training less sensitive to the presence of outliers. In order to evaluate this replacement, FWNN models are obtained in two identification case studies: a real nonlinear system, consisting of a multisection tank, and a simulated system based on a model of the human knee joint. The results demonstrate that the application of correntropy as the error backpropagation algorithm cost function makes the identification procedure using FWNN models more robust to outliers. However, this is only achieved if the gaussian kernel width of correntropy is properly adjusted.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Information processing in the human brain has always been considered as a source of inspiration in Artificial Intelligence; in particular, it has led researchers to develop different tools such as artificial neural networks. Recent findings in Neurophysiology provide evidence that not only neurons but also isolated and networks of astrocytes are responsible for processing information in the human brain. Artificial neural net- works (ANNs) model neuron-neuron communications. Artificial neuron-glia networks (ANGN), in addition to neuron-neuron communications, model neuron-astrocyte con- nections. In continuation of the research on ANGNs, first we propose, and evaluate a model of adaptive neuro fuzzy inference systems augmented with artificial astrocytes. Then, we propose a model of ANGNs that captures the communications of astrocytes in the brain; in this model, a network of artificial astrocytes are implemented on top of a typical neural network. The results of the implementation of both networks show that on certain combinations of parameter values specifying astrocytes and their con- nections, the new networks outperform typical neural networks. This research opens a range of possibilities for future work on designing more powerful architectures of artificial neural networks that are based on more realistic models of the human brain.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This work introduces joint power amplifier (PA) and I/Q modulator modelling and compensation for LongTerm Evolution (LTE) transmitters using artificial neural networks (ANNs). The proposed solution util-izes a powerful nonlinear autoregressive with exogenous inputs (NARX) ANN architecture, which yieldsnoticeable results for high peak to average power ratio (PAPR) LTE signals. Given the ANNs learning capa-bilities, this one-step solution, which includes the mitigation of both PA nonlinearity and I/Q modulatorimpairments, is both accurate and adaptable

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The focus of this work is to develop the knowledge of prediction of the physical and chemical properties of processed linear low density polyethylene (LLDPE)/graphene nanoplatelets composites. Composites made from LLDPE reinforced with 1, 2, 4, 6, 8, and 10 wt% grade C graphene nanoplatelets (C-GNP) were processed in a twin screw extruder with three different screw speeds and feeder speeds (50, 100, and 150 rpm). These applied conditions are used to optimize the following properties: thermal conductivity, crystallization temperature, degradation temperature, and tensile strength while prediction of these properties was done through artificial neural network (ANN). The three first properties increased with increase in both screw speed and C-GNP content. The tensile strength reached a maximum value at 4 wt% C-GNP and a speed of 150 rpm as this represented the optimum condition for the stress transfer through the amorphous chains of the matrix to the C-GNP. ANN can be confidently used as a tool to predict the above material properties before investing in development programs and actual manufacturing, thus significantly saving money, time, and effort.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Can neural networks learn to select an alternative based on a systematic aggregation of convicting individual preferences (i.e. a 'voting rule')? And if so, which voting rule best describes their behavior? We show that a prominent neural network can be trained to respect two fundamental principles of voting theory, the unanimity principle and the Pareto property. Building on this positive result, we train the neural network on profiles of ballots possessing a Condorcet winner, a unique Borda winner, and a unique plurality winner, respectively. We investigate which social outcome the trained neural network chooses, and find that among a number of popular voting rules its behavior mimics most closely the Borda rule. Indeed, the neural network chooses the Borda winner most often, no matter on which voting rule it was trained. Neural networks thus seem to give a surprisingly clear-cut answer to one of the most fundamental and controversial problems in voting theory: the determination of the most salient election method.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

LOPES, Jose Soares Batista et al. Application of multivariable control using artificial neural networks in a debutanizer distillation column.In: INTERNATIONAL CONGRESS OF MECHANICAL ENGINEERING - COBEM, 19, 5-9 nov. 2007, Brasilia. Anais... Brasilia, 2007

Relevância:

100.00% 100.00%

Publicador:

Resumo:

[EN]In this paper an architecture for an estimator of short-term wind farm power is proposed. The estimator is made up of a Linear Machine classifier and a set of k Multilayer Perceptrons, training each one for a specific subspace of the input space. The splitting of the input dataset into the k clusters is done using a k-means technique, obtaining the equivalent Linear Machine classifier from the cluster centroids...

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper outlines the development of a crosscorrelation algorithm and a spiking neural network (SNN) for sound localisation based on real sound recorded in a noisy and dynamic environment by a mobile robot. The SNN architecture aims to simulate the sound localisation ability of the mammalian auditory pathways by exploiting the binaural cue of interaural time difference (ITD). The medial superior olive was the inspiration for the SNN architecture which required the integration of an encoding layer which produced biologically realistic spike trains, a model of the bushy cells found in the cochlear nucleus and a supervised learning algorithm. The experimental results demonstrate that biologically inspired sound localisation achieved using a SNN can compare favourably to the more classical technique of cross-correlation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

LOPES, Jose Soares Batista et al. Application of multivariable control using artificial neural networks in a debutanizer distillation column.In: INTERNATIONAL CONGRESS OF MECHANICAL ENGINEERING - COBEM, 19, 5-9 nov. 2007, Brasilia. Anais... Brasilia, 2007

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Las dificultades a las que los estudiantes se enfrentan y su lucha por dominar los temas, podría aumentar como consecuencia de la inadecuada utilización de materiales de evaluación. Generalmente se encuentran en el aula alumnos que hacen buen uso del material de los cursos y de una manera rápida, mientras que otros presentan dificultades con el aprendizaje del material. Esta situación es fácilmente visto en los resultados de los exámenes, un grupo de estudiantes podrían obtener buenas calificaciones animándoles, mientras que otros obtendrían la mala percepción de que los temas son difíciles, y en algunos casos, obligándolos a abandonar el curso o en otros casos a cambiar de carrera. Creemos que mediante el uso de técnicas de aprendizaje automático, y en nuestro caso la utilización de redes neuronales, sería factible crear un entorno de evaluación que podrían ajustarse a las necesidades de cada estudiante. Esto último disminuiría la sensación de insatisfacción de los alumnos y el abandono de los cursos.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A dissertation submitted in fulfillment of the requirements to the degree of Master in Computer Science and Computer Engineering