922 resultados para Pathology
Resumo:
The conversion of an epithelial cell to a mesenchymal cell is critical to metazoan embryogenesis and a de. ning structural feature of organ development. Current interest in this process, which is described as an epithelial- mesenchymal transition (EMT), stems from its developmental importance and its involvement in several adult pathologies. Interest and research in EMT are currently at a high level, as seen by the attendance at the recent EMT meeting in Vancouver, Canada (October 1-3, 2005). The meeting, which was hosted by The EMT International Association, was the second international EMT meeting, the . rst being held in Port Douglas, Queensland, Australia in October 2003. The EMT International Association was formed in 2002 to provide an international body for those interested in EMT and the reverse process, mesenchymal-epithelial transition, and, most importantly, to bring together those working on EMT in development, cancer, . brosis, and pathology. These themes continued during the recent meeting in Vancouver. Discussion at the Vancouver meeting spanned several areas of research, including signaling pathway activation of EMT and the transcription factors and gene targets involved. Also covered in detail was the basic cell biology of EMT and its role in cancer and . brosis, as well as the identi. cation of new markers to facilitate the observation of EMT in vivo. This is particularly important because the potential contribution of EMT during neoplasia is the subject of vigorous scientific debate (Tarin, D., E.W. Thompson, and D.F. Newgreen. 2005. Cancer Res. 65:5996-6000; Thompson, E.W., D.F. Newgreen, and D. Tarin. 2005. Cancer Res. 65:5991-5995).
Resumo:
Aim To establish the suitability of multiplex tandem polymerase chain reaction (MT-PCR) for rapid identification of oestrogen receptor (ER) and Her-2 status using a single, formalin-fixed, paraffin-embedded (FFPE) breast tumour section. Methods Tissue sections from 29 breast tumours were analysed by immunohistochemistry (IHC) and fluorescence in situ hybridisation (FISH). RNA extracted from 10μm FFPE breast tumour sections from 24 of 29 tumours (14 ER positive and 5 Her-2 positive) was analysed by MT-PCR. After establishing a correlation between IHC and/or FISH and MT-PCR results, the ER/Her-2 status of a further 32 randomly selected, archival breast tumour specimens was established by MT-PCR in a blinded fashion, and compared to IHC/FISH results. Results MT-PCR levels of ER and Her-2 showed good concordance with IHC and FISH results. Furthermore, among the ER positive tumours, MT-PCR provided a quantitative score with a high dynamic range. Threshold values obtained from this data set applied to 32 archival tumour specimens showed that tumours strongly positive for ER and/or Her-2 expression were easily identified by MT-PCR. Conclusion MT-PCR can provide rapid, sensitive and cost-effective analysis of FFPE material and may prove useful as triage to identify patients suited to endocrine or trastuzumab (Herceptin) treatment.
Resumo:
Vimentin is an intermediate filament protein normally expressed in mesenchymal cells, but evidence is accumulating in the literature which suggests that the aberrant expression of vimentin in epithelial cancer cells might be related to local invasiveness and metastatic potential. Vimentin expression has previously been associated with invasive properties in an in vitro model consisting of a set of HPV-33-transformed cervical keratinocyte cell lines. In the present study, in order to emphasize those in vitro findings, the expression of vimentin has been investigated in cervical neoplasms of different grades, using immunohistochemistry. A clear association is reported between vimentin expression and metastatic progression, since vimentin was detected in all invasive carcinomas and lymph node metastases, but not in CIN III lesions. These in vivo results are compared with present and previous data obtained in vitro on cervical keratinocyte cell lines, where vimentin expression also correlated with in vitro invasiveness.
Resumo:
Introduction The importance of in vitro biomechanical testing in today’s understanding of spinal pathology and treatment modalities cannot be stressed enough. Different studies have used differing levels of dissection of their spinal segments for their testing protocols[1, 2]. The aim of this study was to assess the impact of removing the costovertebral joints and partial resection of the spinous process sequentially, on the stiffness of the immature thoracic bovine spinal segment. Materials and Methods Thoracic spines from 6-8 week old calves were used. Each spine was dissected and divided into motion segments with 5cm of attached rib on each side and full spinous processes including levels T4-T11 (n=28). They were potted in polymethylemethacrylate. An Instron Biaxial materials testing machine with a custom made jig was used for testing. The segments were tested in flexion/extension, lateral bending and axial rotation at 37⁰C and 100% humidity, using moment control to a maximum 1.75 Nm with a loading rate of 0.3 Nm per second. They were first tested intact for ten load cycles with data collected from the tenth cycle. Progressive dissection was performed by removing first the attached ribs, followed by the spinous process at its base. Biomechanical testing was carried out after each level of dissection using the same protocol. Statistical analysis of the data was performed using repeated measures ANOVA. Results In combined flexion/extension there was a significant reduction in stiffness of 16% (p=0.002). This was mainly after resection of the ribs (14%, p=0.024) and mainly occurred in flexion where stiffness reduced by 22% (p=0.021). In extension, stiffness dropped by 13% (p=0.133). However there was no further significant change in stiffness on resection of the spinous process (<1%) (p=1.00). In lateral bending there was a significant decrease in stiffness of 13% (p<0.001). This comprised a drop of 11% on resection of the ribs (p=0.009) and a further 8% on resection of the spinous process (p=0.014). There was no difference between left and right bending. In axial rotation there was no significant change in stiffness after each stage of dissection (p=0.253). There was no difference between left and right rotation. Conclusion The costovertebral joints play a significant role in providing stability to the bovine thoracic spine in both flexion/extension and lateral bending, whereas the spinous processes play a minor role. Both elements have little effect on axial rotation stability.
Resumo:
Neuropsychological tests requiring patients to find a path through a maze can be used to assess visuospatial memory performance in temporal lobe pathology, particularly in the hippocampus. Alternatively, they have been used as a task sensitive to executive function in patients with frontal lobe damage. We measured performance on the Austin Maze in patients with unilateral left and right temporal lobe epilepsy (TLE), with and without hippocampal sclerosis, compared to healthy controls. Performance was correlated with a number of other neuropsychological tests to identify the cognitive components that may be associated with poor Austin Maze performance. Patients with right TLE were significantly impaired on the Austin Maze task relative to patients with left TLE and controls, and error scores correlated with their performance on the Block Design task. The performance of patients with left TLE was also impaired relative to controls; however, errors correlated with performance on tests of executive function and delayed recall. The presence of hippocampal sclerosis did not have an impact on maze performance. A discriminant function analysis indicated that the Austin Maze alone correctly classified 73.5% of patients as having right TLE. In summary, impaired performance on the Austin Maze task is more suggestive of right than left TLE; however, impaired performance on this visuospatial task does not necessarily involve the hippocampus. The relationship of the Austin Maze task with other neuropsychological tests suggests that differential cognitive components may underlie performance decrements in right versus left TLE.
Resumo:
Studies of semantic impairment arising from brain disease suggest that the anterior temporal lobes are critical for semantic abilities in humans; yet activation of these regions is rarely reported in functional imaging studies of healthy controls performing semantic tasks. Here, we combined neuropsychological and PET functional imaging data to show that when healthy subjects identify concepts at a specific level, the regions activated correspond to the site of maximal atrophy in patients with relatively pure semantic impairment. The stimuli were color photographs of common animals or vehicles, and the task was category verification at specific (e.g., robin), intermediate (e.g., bird), or general (e.g., animal) levels. Specific, relative to general, categorization activated the antero-lateral temporal cortices bilaterally, despite matching of these experimental conditions for difficulty. Critically, in patients with atrophy in precisely these areas, the most pronounced deficit was in the retrieval of specific semantic information.
Resumo:
INTRODUCTION: Galectin family members have been demonstrated to be abnormally expressed in cancer at the protein and mRNA level. This study investigated the levels of galectin proteins and mRNA expression in a large cohort of patients with papillary thyroid carcinoma and matched lymph node metastases with particular emphasis on galectin-1 and galectin-3. METHODS: mRNA expression of galectin family members (1, 2, 3, 4, 7, 8, 9, 10 and 12) were analysed by real-time polymerase chain reaction in 65 papillary thyroid carcinomas, 30 matched lymph nodes with metastatic papillary thyroid carcinoma and 5 non-cancer thyroid tissues. Galectin-1 and 3 protein expression was determined by immunohistochemistry in these samples. RESULTS: Significant expression differences in all tested galectin family members (1, 2, 3, 4, 7, 8, 9, 10 and 12) were noted for mRNA in papillary thyroid carcinomas, with and without lymph node metastasis. Galectin-1 protein was more strongly expressed than galectin-3 protein in papillary thyroid carcinoma. Galectin-1 protein was found to be overexpressed in 32% of primary papillary thyroid carcinomas. A majority of lymph nodes with metastatic papillary thyroid carcinoma (53%) had significantly increased expression of galectin-1 protein, as did 47% of primaries with metastases. Galectin-1 mRNA levels were decreased in the vast majority (94%) of primary thyroid carcinomas that did not have metastases present. Galectin-3 protein levels were noted to be overexpressed in 15% of primary papillary thyroid carcinomas. In primary papillary thyroid carcinoma with lymph node metastases, 32% had over expression of galectin-3 protein. Overexpression of galectin-3 mRNA was noted in 58% of papillary thyroid carcinomas and 64% of lymph nodes bearing metastatic papillary thyroid carcinoma. Also, primary papillary thyroid carcinoma with lymph node metastases had significantly higher expression of galectin-3 mRNA compared to those without lymph node metastases. CONCLUSION: Galectin family members show altered expression at the mRNA level in papillary thyroid cancers. Overexpression of galectin-1 and 3 proteins were noted in papillary thyroid carcinoma with lymph node metastases. The results presented here demonstrated that galectin-1 and galectin-3 expression have important roles in clinical progression of papillary thyroid carcinoma.
Resumo:
Background JK1 is a novel cancer-related gene with unknown functional role in carcinogenesis. The aim of this study is to investigate the role of JK1 gene in carcinogenesis in an in vitro cell proliferation and migration analysis model. Methods Small hairpin RNAs (shRNA) were designed to knock-down JK1 expression in colon cancer cell line (SW480) using transduction ready lentiviral particles. Cell proliferation and cell migration assays were performed on multiple extracellular matrices to investigate the cellular effects of JK1 in colon cancer cells. A non-cancer colonic epithelial cell line (FHC) was used to compare the expression of JK1 in cancer cell line. Results JK1 knock-down did not affect cellular proliferation or survival in colon cancer. However, the manipulation increased cancer cell migration rates on collagen and fibronectin substrates. Conclusions JK1 was shown for the first time to have a functional role in the pathogenesis of colon cancer. The results imply that JK1 represses the capacity of cancer cells to migrate within their tissue. They also concurred with the previous findings of JK1 activity correlations with clinical and pathological features in colon cancer. The capacity may have utility as a means to prevent cancer cells forming metastases.
Resumo:
AIMS The aims of the study are to characterize changes in JK-1 (FAM134B) at the DNA level in colorectal adenocarcinoma and adenoma and exploring the possible correlations with clinical and pathological features. METHOD JK-1 gene DNA copy number changes were studied in 211 colorectal carcinomas, 32 colorectal adenoma and 20 colorectal non-cancer colorectal tissue samples by real-time quantitative polymerase chain reaction. The results were correlated with clinical and pathological parameters. RESULTS Colorectal adenomas were more likely to be amplified than deleted with regard to JK-1 (FAM134B) DNA copy number change. The copy number level of JK-1 (FAM134B) DNA in colorectal adenocarcinomas was significantly lower in comparison to colorectal adenomas. Changes in JK-1 (FAM134B) DNA copy number were associated with histological subtypes, and cancer stage. Lower copy numbers were associated with higher tumor stage, lymph node stage and overall pathological stage of cancer. Conversely, higher DNA copy numbers were detected more often in the mucinous adenocarcinoma. CONCLUSIONS This is the first study showing significant correlations of the JK-1 (FAM134B) gene copy number alterations with clinical and pathological features in a large cohort of pre-invasive and invasive colorectal malignancies. The changes in DNA copy number associated with progression of colorectal malignancies reflect that JK-1 (FAM134B) gene could play a role in controlling some steps in development of the invasive phenotypes.
Resumo:
The endothelin axis is a group of signaling molecules and their receptors that have been implicated in vascularization of cancers, with their expression being observed to change in different cancer types. In this research, we examined the expression of endothelin 1 and endothelin receptor A at the protein and messenger RNA (mRNA) levels in 123 papillary thyroid carcinomas and 40 matched lymph nodes with metastatic papillary thyroid carcinomas. We found altered endothelin axis mRNA expression in several clinicopathologic parameters with increased endothelin 1 expression in thyroid papillary carcinoma showing stromal calcification, cancers in men, and primary cancers with lymph node metastases. Increased endothelin receptor A mRNA expression was noted in the larger cancers. There is a significant correlation between expression of endothelin receptor A and endothelin 1 in papillary thyroid carcinoma. Both endothelin receptor A and endothelin 1 mRNA expressions were significantly higher in metastatic carcinoma in the lymph node than in primary thyroid cancer. The metastatic carcinoma in the lymph node had increased expression compared with matched primary thyroid carcinoma. Expressions of endothelin 1 and endothelin receptor A were also documented as being high at the protein level. Our results indicate that in thyroid cancer, endothelin 1 and endothelin receptor A are associated with growth in advanced stages and lymph node metastases, likely through known angiogenic linkages. Targeting the endothelin axis may be useful in planning angiogenesis therapy for thyroid cancer.
Resumo:
"...The mTOR protein expression in colorectal adenomas has not been widely reported in the literature. Our recent study demonstrated no significant difference in mTOR protein expression in adenomas compared to carcinomas of the large intestine [1]. However, mTOR mRNA showed lower expression in colorectal adenomas compared to colorectal adenocarcinomas..."
Resumo:
We aim to examine the miR-1288 expression in cancer cell lines and a large cohort of patients with colorectal cancer. Two colon cancer cell lines (SW480 and SW48) and one normal colonic epithelial cell line (FHC) were recruited. The miRNA expressions of miR-1288 were tested on these cell lines by using quantitative real-time polymerase chain reaction (qRT-PCR). An exogenous miR-1288 (mimic) was used to detect cell proliferation and cell cycle changes in SW480 using MTT calorimetric assay and flow cytometry, respectively. In addition, tissues from 122 patients with surgical resection of colorectum (82 adenocarcinomas, 20 adenomas, and 20 non-neoplastic tissues) were tested for miR-1288 expression by qRT-PCR. The colon cancer cell lines showed reduced expression of miR-1288 compared to normal colonic epithelial cell line. Over expression of miR-1288 in SW480 cell line showed increased cell proliferation and increased G2-M phase cells. In tissues, reduced miR-1288 expression was noted in majority of colorectal adenocarcinoma compared to colorectal adenoma and non-neoplastic tissues. Reduced or absent expression of miR-1288 was noted in 76% (n = 62/82) of the cancers. The expression levels of miR-1288 were higher in distal colorectal adenocarcinomas (P = 0.013) and in cancers of lower T staging (P = 0.033). To conclude, alternation of miR-1288 expression is important in the progression of colorectal cancer. The differential regulation of miR-1288 was found to be related to cancer location and pathological staging in colorectal cancers.
Resumo:
miR-126 has been implicated in the processes of inflammation and angiogenesis. Through these processes, miR-126 is implicated in cancer biology, but its role there has not been well reviewed. The aim of this review is to examine the molecular mechanisms and clinicopathological significance of miR-126 in human cancers. miR-126 was shown to have roles in cancers of the gastrointestinal tract, genital tracts, breast, thyroid, lung and some other cancers. Its expression was suppressed in most of the cancers studied. The molecular mechanisms that are known to cause aberrant expression of miR-126 include alterations in gene sequence, epigenetic modification and alteration of dicer abundance. miR-126 can inhibit progression of some cancers via negative control of proliferation, migration, invasion, and cell survival. In some instances, however, miR-126 supports cancer progression via promotion of blood vessel formation. Downregulation of miR-126 induces cancer cell proliferation, migration, and invasion via targeting specific oncogenes. Also, reduced levels of miR-126 are a significant predictor of poor survival of patients in many cancers. In addition, miR-126 can alter a multitude of cellular mechanisms in cancer pathogenesis via suppressing gene translation of numerous validated targets such as PI3K, KRAS, EGFL7, CRK, ADAM9, HOXA9, IRS-1, SOX-2, SLC7A5 and VEGF. To conclude, miR-126 is commonly down-regulated in cancer, most likely due to its ability to inhibit cancer cell growth, adhesion, migration, and invasion through suppressing a range of important gene targets. Understanding these mechanisms by which miR-126 is involved with cancer pathogenesis will be useful in the development of therapeutic targets for the management of patients with cancer.
Resumo:
Vascular endothelial growth factor (VEGF) promotes growth of blood or lymphatic vessels. The aim of the current study is to identify relationships between VEGF-A and VEGF-C, and their impact in angiogenesis and metastases in thyroid cancers. VEGF-A and VEGF-C mRNA and protein expression was investigated in 136 thyroid cancers (123 papillary thyroid carcinomas and 13 undifferentiated thyroid carcinomas) and 40 matched lymph node metastases with papillary thyroid carcinoma using reverse transcription polymerase chain reaction and immunohistochemistry. VEGF-A and VEGF-C mRNA expression was significantly different between conventional papillary thyroid carcinoma, follicular variant of papillary thyroid carcinoma, and undifferentiated thyroid carcinomas (P = 1 x 10(-6) and 1 x 10(-5), respectively). In undifferentiated carcinoma, VEGF-A and VEGF-C protein overexpression was noted in all cases. VEGF-A and VEGF-C mRNA overexpression was noted in 51% (n = 62) and 27% (n = 33) of the papillary thyroid carcinomas, whereas VEGF-A and VEGF-C protein overexpression was also identified in 70% (n = 86) and 62% (n = 76) of the carcinomas. VEGF-A mRNA was significantly higher in cancers with lymph node metastases compared with nonmetastatic cancers (P = .001), whereas most metastatic cancers underexpressed VEGF-C (P = .0002), with a similar trend for protein. The expression of VEGF-A and VEGF-C correlated with each other at both mRNA and protein levels (P = .00004 and .003, respectively). In summary, VEGF-A and -C expressions correlate with the pathological parameters and metastatic status of thyroid carcinomas. The significant correlations between the expressions of these genes add weight to hypotheses concerning VEGF-A and -C interaction in cancer progression.
Resumo:
B-Raf is one of the more commonly mutated proto-oncogenes implicated in the development of cancers. In this review, we consider the mechanisms and clinical impacts of B-Raf mutations in cancer and discuss the implications for the patient in melanoma, thyroid cancer and colorectal cancer, where B-Raf mutations are particularly common.