870 resultados para Metal-ceramic joint. Mechanical metallization. Brazing. Zirconia and stainless steel
Resumo:
Il rachide è stato suddiviso in tre colonne da Denis: anteriore e centrale comprendono la metà anteriore del corpo vertebrale, la metà posteriore e l’inizio dei peduncoli, mentre la colonna posteriore comprende l’arco e i peduncoli stessi. In caso di resezione o lesione della colonna anteriore e media è indicata la ricostruzione. Diverse tecniche e materiali possono essere usati per ricostruire il corpo vertebrale. Innesti vascolarizzati, autograft, allograft sono stati usati, così come impianti sintetici di titanio o materiale plastico come il PEEK (Poly etere etere ketone). Tutti questi materiali hanno vantaggi e svantaggi in termini di proprietà intrinseche, resistenza meccanica, modulo di elasticità, possibilità di trasmissione malattie, capacità di fondersi con l’osso ospite o meno. Le soluzioni più usate sono le cage in titanio o carbonio, il PMMA ( Poli methil metacrilato), gli innesti ossei massivi. Si è effettuato uno studio di coorte retrospettivo paragonando due gruppi di pazienti oncologici spinali trattati da due chirurghi esperti in un centro di riferimento, con vertebrectomia e ricostruzione della colonna anteriore: un gruppo con cage in carbonio o titanio, l’altro gruppo con allograft massivo armato di innesto autoplastico o mesh in titanio. Si sono confrontati i risultati in termini di cifosi segmenterai evolutiva, fusione ossea e qualità di vita del paziente. Il gruppo delle cage in carbonio / titanio ha avuto risultati leggermente migliori dal punto di vista biomeccanico ma non statisticamente significativo, mentre dal punto di vista della qualità di vita i risultati sono stati migliori nel gruppo allograft. Non ci sono stati fallimenti meccanici della colonna anteriore in entrambi i gruppi, con un Fu tra 12 e 60 mesi. Si sono paragonati anche i costi delle due tecniche. In conclusione l’allogar è una tecnica sicura ed efficace, con proprietà meccaniche solide, soprattutto se armato con autograft o mesi in titanio.
Resumo:
Granular matter, also known as bulk solids, consists of discrete particles with sizes between micrometers and meters. They are present in many industrial applications as well as daily life, like in food processing, pharmaceutics or in the oil and mining industry. When handling granular matter the bulk solids are stored, mixed, conveyed or filtered. These techniques are based on observations in macroscopic experiments, i.e. rheological examinations of the bulk properties. Despite the amply investigations of bulk mechanics, the relation between single particle motion and macroscopic behavior is still not well understood. For exploring the microscopic properties on a single particle level, 3D imaging techniques are required.rnThe objective of this work was the investigation of single particle motions in a bulk system in 3D under an external mechanical load, i.e. compression and shear. During the mechanical load the structural and dynamical properties of these systems were examined with confocal microscopy. Therefor new granular model systems in the wet and dry state were designed and prepared. As the particles are solid bodies, their motion is described by six degrees of freedom. To explore their entire motion with all degrees of freedom, a technique to visualize the rotation of spherical micrometer sized particles in 3D was developed. rnOne of the foci during this dissertation was a model system for dry cohesive granular matter. In such systems the particle motion during a compression of the granular matter was investigated. In general the rotation of single particles was the more sensitive parameter compared to the translation. In regions with large structural changes the rotation had an earlier onset than the translation. In granular systems under shear, shear dilatation and shear zone formation were observed. Globally the granular sediments showed a shear behavior, which was known already from classical shear experiments, for example with Jenike cells. Locally the shear zone formation was enhanced, when near the applied load a pre-diluted region existed. In regions with constant volume fraction a mixing between the different particle layers occurred. In particular an exchange of particles between the current flowing region and the non-flowing region was observed. rnThe second focus was on model systems for wet granular matter, where an additional binding liquid is added to the particle suspension. To examine the 3D structure of the binding liquid on the micrometer scale independently from the particles, a second illumination and detection beam path was implemented. In shear and compression experiments of wet clusters and bulk systems completely different dynamics compared to dry cohesive models systems occured. In a Pickering emulsion-like system large structural changes predominantly occurred in the local environment of binding liquid droplets. These large local structural changes were due to an energy interplay between the energy stored in the binding droplet during its deformation and the binding energy of particles at the droplet interface. rnConfocal microscopy in combination with nanoindentation gave new insights into the single particle motions and dynamics of granular systems under a mechanical load. These novel experimental results can help to improve the understanding of the relationship between bulk properties of granular matter, such as volume fraction or yield stress and the dynamics on a single particle level.rnrn
Resumo:
In the last years the number of shoulder arthroplasties has been increasing. Simultaneously the study of their shape, size and strength and the reasons that bring to a possible early explantation have not yet been examined in detail. The research carried out directly on explants is practically nonexistent, this means a poor understanding of the mechanisms leading the patient and so the surgeon, to their removal. The analysis of the mechanisms which are the cause of instability, dislocation, broken, fracture, etc, may lead to a change in the structure or design of the shoulder prostheses and lengthen the life of the implant in situ. The idea was to analyze 22 explants through three methods in order to find roughness, corrosion and surface wear. In the first method, the humeral heads and/or the glenospheres were examined with the interferometer, a machine that through electromagnetic waves gives information about the roughness of the surfaces under examination. The output of the device was a total profile containing both roughness and information on the waves (representing the spatial waves most characteristic on the surface). The most important value is called "roughness average" and brings the average value of the peaks found in the local defects of the surfaces. It was found that 42% of the prostheses had considerable peak values in the area where the damage was caused by the implant and not only by external events, such as possibly the surgeon's hand. One of the problems of interest in the use of metallic biomaterials is their resistance to corrosion. The clinical significance of the degradation of metal implants has been the purpose of the second method; the interaction between human body and metal components is critical to understand how and why they arrive to corrosion. The percentage of damage in the joints of the prosthetic components has been calculated via high resolution photos and the software ImageJ. The 40% and 50% of the area appeared to have scratches or multiple lines due to mechanical artifacts. The third method of analysis has been made through the use of electron microscopy to quantify the wear surface in polyethylene components. Different joint movements correspond to different mechanisms of damage, which were imprinted in the parts of polyethylene examined. The most affected area was located mainly in the side edges. The results could help the manufacturers to modify the design of the prostheses and thus reduce the number of explants. It could also help surgeons in choosing the model of the prosthesis to be implanted in the patient.
Resumo:
BACKGROUND: This study evaluates 3-year success rates of titanium screw-type implants with a chemically modified sandblasted and acid-etched surface (mod SLA), which were functionally loaded after 3 weeks of healing. METHODS: A total of 56 implants, inserted in the posterior mandibles of 39 partially edentulous patients, underwent undisturbed healing for 3 weeks. At day 21, the implants were fully loaded with provisional crowns. Definitive metal ceramic restorations were fabricated after 6 months of healing. Clinical measurements regarding soft tissue parameters and radiographs were obtained at different time points up to 36 months after implant placement. The soft tissue and radiographic parameters for the mod SLA implants after 3 years in function were compared to a historic control group of implants with an SLA surface using an early loading protocol after 6 weeks. RESULTS: None of the implants failed to integrate. However, two implants were considered "spinners" at day 21 and were left unloaded for an extended period. Therefore, 96.4% of the inserted implants were loaded according to the protocol tested. All 56 implants, including the "spinners," showed favorable clinical and radiographic findings at the 3-year follow-up examination. All 56 implants were considered successfully integrated, resulting in a 3-year survival and success rate of 100%. Dental implants with a mod SLA surface demonstrated statistically significant differences for probing depths and clinical attachment level values compared to the historic control group, with the mod SLA surface implants having overall lower probing depths and clinical attachment level scores. CONCLUSION: This prospective study using an early loading protocol demonstrates that titanium implants with the mod SLA surface can achieve and maintain successful tissue integration over a period of 3 years.
Resumo:
PURPOSE: The aim of this two-center study was to evaluate screw-type titanium implants with a chemically modified, sandblasted and acid-etched surface when placed in the posterior maxilla or mandible, and loaded 21 days after placement. MATERIAL AND METHODS: All 56 patients met strict inclusion criteria and provided informed consent. Each patient displayed either a single-tooth gap, an extended edentulous space, or a distal extension situation in the posterior mandible or maxilla. Eighty-nine dental implants (SLActive, Institut Straumann AG, Basel, Switzerland) were inserted according to an established nonsubmerged protocol and underwent undisturbed healing for a period of 21 days. Where appropriate, the implants were loaded after 21 days of healing with provisional restorations in full occlusion. Definitive metal ceramic restorations were fabricated and positioned on each implant after 6 months of healing. Clinical measurements regarding soft tissue parameters and radiographs were obtained at different time points up to 24 months after implant placement. RESULTS: Of the 89 inserted implants, two (2.2%) implants failed to integrate and were removed during healing, and two (2.2%) additional implants required a prolonged healing time. A total of 85 (95.6%) implants were therefore loaded without incident after 21 days of healing. No additional implant was lost throughout the study period, whereas one implant was lost to follow-up and therefore left unaccounted for further analysis. The remaining 86 implants all exhibited favorable radiographic and clinical findings. Based on strict success criteria, these implants were considered successfully integrated 2 years after insertion, resulting in a 2-year success rate of 97.7%. CONCLUSION: The results of this prospective two-center study demonstrate that titanium implants with a modified SLA surface can predictably achieve successful tissue integration when loaded in full occlusion 21 days after placement. Integration could be maintained without incident for at least 2 years of follow-up.
Resumo:
The aim of this study was to assess the use of mechanical bowel preparation (MBP) and antimicrobial prophylaxis in elective colorectal surgery in Switzerland.
Resumo:
The closing sounds of mechanical heart valves can be disturbing for patients and their closest relatives. Although some investigations into mechanical heart valve sounds have been performed, the particularities of the valve sound when it is attached to a vascular prosthesis to replace the aortic root and the ascending aorta has not been studied to date. The study aim was to compare the closing sounds of three various mechanical composite graft prostheses, and to analyze the impact of such sounds on the patients' quality of life.
Resumo:
Changes in resource use over time can provide insight into technological choice and the extent of long-term stability in cultural practices. In this paper we re-evaluate the evidence for a marked demographic shift at the inception of the Early Iron Age at Troy by applying a robust macroscale analysis of changing ceramic resource use over the Late Bronze and Iron Age. We use a combination of new and legacy analytical datasets (NAA and XRF), from excavated ceramics, to evaluate the potential compositional range of local resources (based on comparisons with sediments from within a 10 km site radius). Results show a clear distinction between sediment-defined local and non-local ceramic compositional groups. Two discrete local ceramic resources have been previously identified and we confirm a third local resource for a major class of EIA handmade wares and cooking pots. This third source appears to derive from a residual resource on the Troy peninsula (rather than adjacent alluvial valleys). The presence of a group of large and heavy pithoi among the non-local groups raises questions about their regional or maritime origin. (C) 2012 Elsevier Ltd. All rights reserved.
Resumo:
With the increasing advances in hip joint preservation surgery, accurate diagnosis and assessment of femoral head and acetabular cartilage status is becoming increasingly important. Magnetic resonance imaging (MRI) of the hip does present technical difficulties. The fairly thin cartilage lining necessitates high image resolution and high contrast-to-noise ratio (CNR). With MR arthrography (MRA) using intraarticular injected gadolinium, labral tears and cartilage clefts may be better identified through the contrast medium filling into the clefts. However, the ability of MRA to detect varying grades of cartilage damage is fairly limited and early histological and biochemical changes in the beginning of osteoarthritis (OA) cannot be accurately delineated. Traditional MRI thus lacks the ability to analyze the biological status of cartilage degeneration. The technique of delayed gadolinium-enhanced MRI of cartilage (dGEMRIC) is sensitive to the charge density of cartilage contributed by glycosaminoglycans (GAGs), which are lost early in the process of OA. Therefore, the dGEMRIC technique has a potential to detect early cartilage damage that is obviously critical for decision-making regarding time and extent of intervention for joint-preservation. In the last decade, cartilage imaging with dGEMRIC has been established as an accurate and reliable tool for assessment of cartilage status in the knee and hip joint.This review outlines the current status of dGEMRIC for assessment of hip joint cartilage. Practical modifications of the standard technique including three-dimensional (3D) dGEMRIC and dGEMRIC after intra-articular gadolinium instead of iv-dGEMRIC will also be addressed.
Resumo:
Aluminum coatings were applied to 2024-T3 and 7075-T6 aluminum alloys via the Cold Spray process. The coatings were applied to substrateswith various surface preparation and Cold Spray carrier gas combinations. Some samples were coated with an additional sealant with and without a chromate conversion layer. An exhaustive corrosion analysis was then performed which utilized a number of long termand accelerated tests in order to characterize the corrosion protection of the coatings.
Resumo:
AIM: To assess survival rates and complications of root-filled teeth restored with or without post-and-core systems over a mean observation period of >or=4 years. METHODOLOGY: A total of 325 single- and multirooted teeth in 183 subjects treated in a private practice were root filled and restored with either a cast post-and-core or with a prefabricated titanium post and composite core. Root-filled teeth without post-retained restorations served as controls. The restored teeth served as abutments for single unit metal-ceramic or composite crowns or fixed bridges. Teeth supporting cantilever bridges, overdentures or telescopic crowns were excluded. RESULTS: Seventeen teeth in 17 subjects were lost to follow-up (17/325: 5.2%). The mean observation period was 5.2 +/- 1.8 (SD) years for restorations with titanium posts, 6.2 +/- 2.0 (SD) years for cast post-and-cores and 4.4 +/- 1.7 (SD) years for teeth without posts. Overall, 54% of build-ups included the incorporation of a titanium post and 26.5% the cementation of a cast post-and-core. The remaining 19.5% of the teeth were restored without intraradicular retention. The adjusted 5-year tooth survival rate amounted to 92.5% for teeth restored with titanium posts, to 97.1% for teeth restored with cast post-and-cores and to 94.3% for teeth without post restorations, respectively. The most frequent complications included root fracture (6.2%), recurrent caries (1.9%), post-treatment periradicular disease (1.6%) and loss of retention (1.3%). CONCLUSION: Provided that high-quality root canal treatment and restorative protocols are implemented, high survival and low complication rates of single- and multirooted root-filled teeth used as abutments for fixed restorations can be expected after a mean observation period of >or=4 years.
A systematic review of the 5-year survival and complication rates of implant-supported single crowns
Resumo:
OBJECTIVES: The objective of this systematic review was to assess the 5-year survival of implant-supported single crowns (SCs) and to describe the incidence of biological and technical complications. METHODS: An electronic MEDLINE search complemented by manual searching was conducted to identify prospective and retrospective cohort studies on SCs with a mean follow-up time of at least 5 years. Failure and complication rates were analyzed using random-effects Poisson's regression models to obtain summary estimates of 5-year proportions. RESULTS: Twenty-six studies from an initial yield of 3601 titles were finally selected and data were extracted. In a meta-analysis of these studies, survival of implants supporting SCs was 96.8% [95% confidence interval (CI): 95.9-97.6%] after 5 years. The survival rate of SCs supported by implants was 94.5% (95% CI: 92.5-95.9%) after 5 years of function. The survival rate of metal-ceramic crowns, 95.4% (95% CI: 93.6-96.7%), was significantly (P=0.005) higher than the survival rate, 91.2% (95% CI: 86.8-94.2%), of all-ceramic crowns. Peri-implantitis and soft tissue complications occurred adjacent to 9.7% of the SCs and 6.3% of the implants had bone loss exceeding 2 mm over the 5-year observation period. The cumulative incidence of implant fractures after 5 years was 0.14%. After 5 years, the cumulative incidence of screw or abutment loosening was 12.7% and 0.35% for screw or abutment fracture. For supra-structure-related complications, the cumulative incidence of ceramic or veneer fractures was 4.5%. CONCLUSION: It can be concluded that after an observation period of 5 years, high survival rates for implants and implant-supported SCs can be expected. However, biological and particularly technical complications are frequent.
Resumo:
For countless communities around the world, acquiring access to safe drinking water is a daily challenge which many organizations endeavor to meet. The villages in the interior of Suriname have been the focus of many improved drinking water projects as most communities are without year-round access. Unfortunately, as many as 75% of the systems in Suriname fail within several years of implementation. These communities, scattered along the rivers and throughout the jungle, lack many of the resources required to sustain a centralized water treatment system. However, the centralized system in the village of Bendekonde on the Upper Suriname River has been operational for over 10 years and is often touted by other communities. The Bendekonde system is praised even though the technology does not differ significantly from other failed systems. Many of the water systems that fail in the interior fail due to a lack of resources available to the community to maintain the system. Typically, the more complex a system becomes, so does the demand for additional resources. Alternatives to centralized systems include technologies such as point-of-use water filters, which can greatly reduce the necessity for outside resources. In particular, ceramic point-of-use water filters offer a technology that can be reasonably managed in a low resource setting such as that in the interior of Suriname. This report investigates the appropriateness and effectiveness of ceramic filters constructed with local Suriname clay and compares the treatment effectiveness to that of the Bendekonde system. Results of this study showed that functional filters could be produced from Surinamese clay and that they were more effective, in a controlled laboratory setting, than the field performance of the Bendekonde system for removing total coliform. However, the Bendekonde system was more successful at removing E. coli. In a life-cycle assessment, ceramic water filters manufactured in Suriname and used in homes for a lifespan of 2 years were shown to have lower cumulative energy demand, as well as lower global warming potential than a centralized system similar to that used in Bendekonde.
Resumo:
Osteoarthritis is thought to be caused by a combination of intrinsic vulnerabilities of the joint, such as anatomic shape and alignment, and environmental factors, such as body weight, injury, and overuse. It has been postulated that much of osteoarthritis is due to anatomic deformities. Advances in surgical techniques such as the periacetabular osteotomy, safe surgical dislocation of the hip, and hip arthroscopy have provided us with effective and safe tools to correct these anatomical problems. The limiting factor in treatment outcome in many mechanically compromised hips is the degree of cartilage damage which has occurred prior to treatment. In this regard, the role of imaging, utilizing plain radiographs in conjunction with magnetic resonance imaging, is becoming vitally important for the detection of these anatomic deformities and pre-radiographic arthritis. In this article, we will outline the plain radiographic features of hip deformities that can cause instability or impingement. Additionally, we will illustrate the use of MRI imaging to detect subtle anatomic abnormalities, as well as the use of biochemical imaging techniques such as dGEMRIC to guide clinical decision making.
Resumo:
During locomotion, turning is a common and recurring event which is largely neglected in the current state-of-the-art ankle-foot prostheses, forcing amputees to use different steering mechanisms for turning, compared to non-amputees. A better understanding of the complexities surrounding lower limb prostheses will lead to increased health and well-being of amputees. The aim of this research is to develop a steerable ankle-foot prosthesis that mimics the human ankle mechanical properties. Experiments were developed to estimate the mechanical impedance of the ankle and the ankles angles during straight walk and step turn. Next, this information was used in the design of a prototype, powered steerable ankle-foot prosthesis with two controllable degrees of freedom. One of the possible approaches in design of the prosthetic robots is to use the human joints’ parameters, especially their impedance. A series of experiments were conducted to estimate the stochastic mechanical impedance of the human ankle when muscles were fully relaxed and co-contracting antagonistically. A rehabilitation robot for the ankle, Anklebot, was employed to provide torque perturbations to the ankle. The experiments were performed in two different configurations, one with relaxed muscles, and one with 10% of maximum voluntary contraction (MVC). Surface electromyography (sEMG) was used to monitor muscle activation levels and these sEMG signals were displayed to subjects who attempted to maintain them constant. Time histories of ankle torques and angles in the lateral/medial (LM) directions, inversion-eversion (IE), and dorsiflexionplantarflexion (DP) were recorded. Linear time-invariant transfer functions between the measured torques and angles were estimated providing an estimate of ankle mechanical impedance. High coherence was observed over a frequency range up to 30 Hz. The main effect of muscle activation was to increase the magnitude of ankle mechanical impedance in all degrees of freedom of the ankle. Another experiment compared the three-dimensional angles of the ankle during step turn and straight walking. These angles were measured to be used for developing the control strategy of the ankle-foot prosthesis. An infrared camera system was used to track the trajectories and angles of the foot and leg. The combined phases of heel strike and loading response, mid stance, and terminal stance and pre-swing were determined and used to measure the average angles at each combined phase. The Range of motion (ROM) in IE increased during turning while ML rotation decreased and DP changed the least. During the turning step, ankle displacement in DP started with similar angles to straight walk and progressively showed less plantarflexion. In IE, the ankle showed increased inversion leaning the body toward the inside of the turn. ML rotation initiated with an increased medial rotation during the step turn relative to the straight walk transitioning to increased lateral rotation at the toe off. A prototype ankle-foot prosthesis capable of controlling both DP and IE using a cable driven mechanism was developed and assessed as part of a feasibility study. The design is capable of reproducing the angles required for straight walk and step turn; generates 712N of lifting force in plantarflexion, and shows passive stiffness comparable to a nonload bearing ankle impedance. To evaluate the performance of the ankle-foot prosthesis, a circular treadmill was developed to mimic human gait during steering. Preliminary results show that the device can appropriately simulate human gait with loading and unloading the ankle joint during the gait in circular paths.