903 resultados para Geo-statistical model


Relevância:

30.00% 30.00%

Publicador:

Resumo:

We consider the development of statistical models for prediction of constituent concentration of riverine pollutants, which is a key step in load estimation from frequent flow rate data and less frequently collected concentration data. We consider how to capture the impacts of past flow patterns via the average discounted flow (ADF) which discounts the past flux based on the time lapsed - more recent fluxes are given more weight. However, the effectiveness of ADF depends critically on the choice of the discount factor which reflects the unknown environmental cumulating process of the concentration compounds. We propose to choose the discount factor by maximizing the adjusted R-2 values or the Nash-Sutcliffe model efficiency coefficient. The R2 values are also adjusted to take account of the number of parameters in the model fit. The resulting optimal discount factor can be interpreted as a measure of constituent exhaustion rate during flood events. To evaluate the performance of the proposed regression estimators, we examine two different sampling scenarios by resampling fortnightly and opportunistically from two real daily datasets, which come from two United States Geological Survey (USGS) gaging stations located in Des Plaines River and Illinois River basin. The generalized rating-curve approach produces biased estimates of the total sediment loads by -30% to 83%, whereas the new approaches produce relatively much lower biases, ranging from -24% to 35%. This substantial improvement in the estimates of the total load is due to the fact that predictability of concentration is greatly improved by the additional predictors.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The charge at which adsorption of orgamc compounds attains a maximum ( \sigma MAX M) at an electrochenucal interface is analysed using several multi-state models in a hierarchical manner The analysis is based on statistical mechamcal results for the following models (A) two-state site parity, (B) two-state muhl-slte, and (C) three-state site parity The coulombic interactions due to permanent and reduced dipole effects (using mean field approximation), electrostatic field effects and specific substrate interactions have been taken into account. The simplest model in the hierarchy (two-state site parity) yields the exphcit dependence of ( \sigma MAX M) on the permanent dipole moment, polarizability of the solvent and the adsorbate, lattice spacing, effective coordination number, etc Other models in the baerarchy bring to hght the influence of the solvent structure and the role of substrate interactions, etc As a result of this approach, the "composition" of oM.x m terms of the fundamental molecular constants becomes clear. With a view to use these molecular results to maxamum advantage, the derived results for ( \sigma MAX M) have been converted into those involving experimentally observable parameters lake Co, C 1, E N, etc Wherever possible, some of the earlier phenomenologlcal relations reported for ( \sigma MAX M), notably by Parsons, Damaskm and Frumkln, and Trasattl, are shown to have a certain molecular basis, vlz a simple two-state sate panty model.As a corollary to the hxerarcbacal modelling, \sigma MAX M and the potential corresponding to at (Emax) are shown to be constants independent of 0max or Corg for all models The lmphcatlon of our analysis f o r OmMa x with respect to that predicted by the generalized surface layer equation (which postulates Om~ and Ema x varlaUon with 0) is discussed in detail Finally we discuss an passing o M. and the electrosorptlon valency an this context.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The aim of this dissertation is to provide conceptual tools for the social scientist for clarifying, evaluating and comparing explanations of social phenomena based on formal mathematical models. The focus is on relatively simple theoretical models and simulations, not statistical models. These studies apply a theory of explanation according to which explanation is about tracing objective relations of dependence, knowledge of which enables answers to contrastive why and how-questions. This theory is developed further by delineating criteria for evaluating competing explanations and by applying the theory to social scientific modelling practices and to the key concepts of equilibrium and mechanism. The dissertation is comprised of an introductory essay and six published original research articles. The main theses about model-based explanations in the social sciences argued for in the articles are the following. 1) The concept of explanatory power, often used to argue for the superiority of one explanation over another, compasses five dimensions which are partially independent and involve some systematic trade-offs. 2) All equilibrium explanations do not causally explain the obtaining of the end equilibrium state with the multiple possible initial states. Instead, they often constitutively explain the macro property of the system with the micro properties of the parts (together with their organization). 3) There is an important ambivalence in the concept mechanism used in many model-based explanations and this difference corresponds to a difference between two alternative research heuristics. 4) Whether unrealistic assumptions in a model (such as a rational choice model) are detrimental to an explanation provided by the model depends on whether the representation of the explanatory dependency in the model is itself dependent on the particular unrealistic assumptions. Thus evaluating whether a literally false assumption in a model is problematic requires specifying exactly what is supposed to be explained and by what. 5) The question of whether an explanatory relationship depends on particular false assumptions can be explored with the process of derivational robustness analysis and the importance of robustness analysis accounts for some of the puzzling features of the tradition of model-building in economics. 6) The fact that economists have been relatively reluctant to use true agent-based simulations to formulate explanations can partially be explained by the specific ideal of scientific understanding implicit in the practise of orthodox economics.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The two-dimensional,q-state (q>4) Potts model is used as a testing ground for approximate theories of first-order phase transitions. In particular, the predictions of a theory analogous to the Ramakrishnan-Yussouff theory of freezing are compared with those of ordinary mean-field (Curie-Wiess) theory. It is found that the Curie-Weiss theory is a better approximation than the Ramakrishnan-Yussouff theory, even though the former neglects all fluctuations. It is shown that the Ramakrishnan-Yussouff theory overestimates the effects of fluctuations in this system. The reasons behind the failure of the Ramakrishnan-Yussouff approximation and the suitability of using the two-dimensional Potts model as a testing ground for these theories are discussed.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Space-fractional operators have been used with success in a variety of practical applications to describe transport processes in media characterised by spatial connectivity properties and high structural heterogeneity altering the classical laws of diffusion. This study provides a systematic investigation of the spatio-temporal effects of a space-fractional model in cardiac electrophysiology. We consider a simplified model of electrical pulse propagation through cardiac tissue, namely the monodomain formulation of the Beeler-Reuter cell model on insulated tissue fibres, and obtain a space-fractional modification of the model by using the spectral definition of the one-dimensional continuous fractional Laplacian. The spectral decomposition of the fractional operator allows us to develop an efficient numerical method for the space-fractional problem. Particular attention is paid to the role played by the fractional operator in determining the solution behaviour and to the identification of crucial differences between the non-fractional and the fractional cases. We find a positive linear dependence of the depolarization peak height and a power law decay of notch and dome peak amplitudes for decreasing orders of the fractional operator. Furthermore, we establish a quadratic relationship in conduction velocity, and quantify the increasingly wider action potential foot and more pronounced dispersion of action potential duration, as the fractional order is decreased. A discussion of the physiological interpretation of the presented findings is made.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Near infrared spectroscopy (NIRS) can be used for the on-line, non-invasive assessment of fruit for eating quality attributes such as total soluble solids (TSS). The robustness of multivariate calibration models, based on NIRS in a partial transmittance optical geometry, for the assessment of TSS of intact rockmelons (Cucumis melo) was assessed. The mesocarp TSS was highest around the fruit equator and increased towards the seed cavity. Inner mesocarp TSS levels decreased towards both the proximal and distal ends of the fruit, but more so towards the proximal end. The equatorial region of the fruit was chosen as representative of the fruit for near infrared assessment of TSS. The spectral window for model development was optimised at 695-1045 nm, and the data pre-treatment procedure was optimised to second-derivative absorbance without scatter correction. The 'global' modified partial least squares (MPLS) regression modelling procedure of WINISI (ver. 1.04) was found to be superior with respect to root mean squared error of prediction (RMSEP) and bias for model predictions of TSS across seasons, compared with the 'local' MPLS regression procedure. Updating of the model with samples selected randomly from the independent validation population demonstrated improvement in both RMSEP and bias with addition of approximately 15 samples.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper describes the development of a model, based on Bayesian networks, to estimate the likelihood that sheep flocks are infested with lice at shearing and to assist farm managers or advisers to assess whether or not to apply a lousicide treatment. The risk of lice comes from three main sources: (i) lice may have been present at the previous shearing and not eradicated; (ii) lice may have been introduced with purchased sheep; and (iii) lice may have entered with strays. A Bayesian network is used to assess the probability of each of these events independently and combine them for an overall assessment. Rubbing is a common indicator of lice but there are other causes too. If rubbing has been observed, an additional Bayesian network is used to assess the probability that lice are the cause. The presence or absence of rubbing and its possible cause are combined with these networks to improve the overall risk assessment.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We use Bayesian model selection techniques to test extensions of the standard flat LambdaCDM paradigm. Dark-energy and curvature scenarios, and primordial perturbation models are considered. To that end, we calculate the Bayesian evidence in favour of each model using Population Monte Carlo (PMC), a new adaptive sampling technique which was recently applied in a cosmological context. The Bayesian evidence is immediately available from the PMC sample used for parameter estimation without further computational effort, and it comes with an associated error evaluation. Besides, it provides an unbiased estimator of the evidence after any fixed number of iterations and it is naturally parallelizable, in contrast with MCMC and nested sampling methods. By comparison with analytical predictions for simulated data, we show that our results obtained with PMC are reliable and robust. The variability in the evidence evaluation and the stability for various cases are estimated both from simulations and from data. For the cases we consider, the log-evidence is calculated with a precision of better than 0.08. Using a combined set of recent CMB, SNIa and BAO data, we find inconclusive evidence between flat LambdaCDM and simple dark-energy models. A curved Universe is moderately to strongly disfavoured with respect to a flat cosmology. Using physically well-motivated priors within the slow-roll approximation of inflation, we find a weak preference for a running spectral index. A Harrison-Zel'dovich spectrum is weakly disfavoured. With the current data, tensor modes are not detected; the large prior volume on the tensor-to-scalar ratio r results in moderate evidence in favour of r=0.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Reputation systems are employed to measure the quality of items on the Web. Incorporating accurate reputation scores in recommender systems is useful to provide more accurate recommendations as recommenders are agnostic to reputation. The ratings aggregation process is a vital component of a reputation system. Reputation models available do not consider statistical data in the rating aggregation process. This limitation can reduce the accuracy of generated reputation scores. In this paper, we propose a new reputation model that considers previously ignored statistical data. We compare our proposed model against state-of the-art models using top-N recommender system experiment.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Digital elevation models (DEMs) have been an important topic in geography and surveying sciences for decades due to their geomorphological importance as the reference surface for gravita-tion-driven material flow, as well as the wide range of uses and applications. When DEM is used in terrain analysis, for example in automatic drainage basin delineation, errors of the model collect in the analysis results. Investigation of this phenomenon is known as error propagation analysis, which has a direct influence on the decision-making process based on interpretations and applications of terrain analysis. Additionally, it may have an indirect influence on data acquisition and the DEM generation. The focus of the thesis was on the fine toposcale DEMs, which are typically represented in a 5-50m grid and used in the application scale 1:10 000-1:50 000. The thesis presents a three-step framework for investigating error propagation in DEM-based terrain analysis. The framework includes methods for visualising the morphological gross errors of DEMs, exploring the statistical and spatial characteristics of the DEM error, making analytical and simulation-based error propagation analysis and interpreting the error propagation analysis results. The DEM error model was built using geostatistical methods. The results show that appropriate and exhaustive reporting of various aspects of fine toposcale DEM error is a complex task. This is due to the high number of outliers in the error distribution and morphological gross errors, which are detectable with presented visualisation methods. In ad-dition, the use of global characterisation of DEM error is a gross generalisation of reality due to the small extent of the areas in which the decision of stationarity is not violated. This was shown using exhaustive high-quality reference DEM based on airborne laser scanning and local semivariogram analysis. The error propagation analysis revealed that, as expected, an increase in the DEM vertical error will increase the error in surface derivatives. However, contrary to expectations, the spatial au-tocorrelation of the model appears to have varying effects on the error propagation analysis depend-ing on the application. The use of a spatially uncorrelated DEM error model has been considered as a 'worst-case scenario', but this opinion is now challenged because none of the DEM derivatives investigated in the study had maximum variation with spatially uncorrelated random error. Sig-nificant performance improvement was achieved in simulation-based error propagation analysis by applying process convolution in generating realisations of the DEM error model. In addition, typology of uncertainty in drainage basin delineations is presented.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Advancements in the analysis techniques have led to a rapid accumulation of biological data in databases. Such data often are in the form of sequences of observations, examples including DNA sequences and amino acid sequences of proteins. The scale and quality of the data give promises of answering various biologically relevant questions in more detail than what has been possible before. For example, one may wish to identify areas in an amino acid sequence, which are important for the function of the corresponding protein, or investigate how characteristics on the level of DNA sequence affect the adaptation of a bacterial species to its environment. Many of the interesting questions are intimately associated with the understanding of the evolutionary relationships among the items under consideration. The aim of this work is to develop novel statistical models and computational techniques to meet with the challenge of deriving meaning from the increasing amounts of data. Our main concern is on modeling the evolutionary relationships based on the observed molecular data. We operate within a Bayesian statistical framework, which allows a probabilistic quantification of the uncertainties related to a particular solution. As the basis of our modeling approach we utilize a partition model, which is used to describe the structure of data by appropriately dividing the data items into clusters of related items. Generalizations and modifications of the partition model are developed and applied to various problems. Large-scale data sets provide also a computational challenge. The models used to describe the data must be realistic enough to capture the essential features of the current modeling task but, at the same time, simple enough to make it possible to carry out the inference in practice. The partition model fulfills these two requirements. The problem-specific features can be taken into account by modifying the prior probability distributions of the model parameters. The computational efficiency stems from the ability to integrate out the parameters of the partition model analytically, which enables the use of efficient stochastic search algorithms.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Bacteria play an important role in many ecological systems. The molecular characterization of bacteria using either cultivation-dependent or cultivation-independent methods reveals the large scale of bacterial diversity in natural communities, and the vastness of subpopulations within a species or genus. Understanding how bacterial diversity varies across different environments and also within populations should provide insights into many important questions of bacterial evolution and population dynamics. This thesis presents novel statistical methods for analyzing bacterial diversity using widely employed molecular fingerprinting techniques. The first objective of this thesis was to develop Bayesian clustering models to identify bacterial population structures. Bacterial isolates were identified using multilous sequence typing (MLST), and Bayesian clustering models were used to explore the evolutionary relationships among isolates. Our method involves the inference of genetic population structures via an unsupervised clustering framework where the dependence between loci is represented using graphical models. The population dynamics that generate such a population stratification were investigated using a stochastic model, in which homologous recombination between subpopulations can be quantified within a gene flow network. The second part of the thesis focuses on cluster analysis of community compositional data produced by two different cultivation-independent analyses: terminal restriction fragment length polymorphism (T-RFLP) analysis, and fatty acid methyl ester (FAME) analysis. The cluster analysis aims to group bacterial communities that are similar in composition, which is an important step for understanding the overall influences of environmental and ecological perturbations on bacterial diversity. A common feature of T-RFLP and FAME data is zero-inflation, which indicates that the observation of a zero value is much more frequent than would be expected, for example, from a Poisson distribution in the discrete case, or a Gaussian distribution in the continuous case. We provided two strategies for modeling zero-inflation in the clustering framework, which were validated by both synthetic and empirical complex data sets. We show in the thesis that our model that takes into account dependencies between loci in MLST data can produce better clustering results than those methods which assume independent loci. Furthermore, computer algorithms that are efficient in analyzing large scale data were adopted for meeting the increasing computational need. Our method that detects homologous recombination in subpopulations may provide a theoretical criterion for defining bacterial species. The clustering of bacterial community data include T-RFLP and FAME provides an initial effort for discovering the evolutionary dynamics that structure and maintain bacterial diversity in the natural environment.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Variety selection in perennial pasture crops involves identifying best varieties from data collected from multiple harvest times in field trials. For accurate selection, the statistical methods for analysing such data need to account for the spatial and temporal correlation typically present. This paper provides an approach for analysing multi-harvest data from variety selection trials in which there may be a large number of harvest times. Methods are presented for modelling the variety by harvest effects while accounting for the spatial and temporal correlation between observations. These methods provide an improvement in model fit compared to separate analyses for each harvest, and provide insight into variety by harvest interactions. The approach is illustrated using two traits from a lucerne variety selection trial. The proposed method provides variety predictions allowing for the natural sources of variation and correlation in multi-harvest data.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

From the autocorrelation function of geomagnetic polarity intervals, it is shown that the field reversal intervals are not independent but form a process akin to the Markov process, where the random input to the model is itself a moving average process. The input to the moving average model is, however, an independent Gaussian random sequence. All the parameters in this model of the geomagnetic field reversal have been estimated. In physical terms this model implies that the mechanism of reversal possesses a memory.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Population dynamics are generally viewed as the result of intrinsic (purely density dependent) and extrinsic (environmental) processes. Both components, and potential interactions between those two, have to be modelled in order to understand and predict dynamics of natural populations; a topic that is of great importance in population management and conservation. This thesis focuses on modelling environmental effects in population dynamics and how effects of potentially relevant environmental variables can be statistically identified and quantified from time series data. Chapter I presents some useful models of multiplicative environmental effects for unstructured density dependent populations. The presented models can be written as standard multiple regression models that are easy to fit to data. Chapters II IV constitute empirical studies that statistically model environmental effects on population dynamics of several migratory bird species with different life history characteristics and migration strategies. In Chapter II, spruce cone crops are found to have a strong positive effect on the population growth of the great spotted woodpecker (Dendrocopos major), while cone crops of pine another important food resource for the species do not effectively explain population growth. The study compares rate- and ratio-dependent effects of cone availability, using state-space models that distinguish between process and observation error in the time series data. Chapter III shows how drought, in combination with settling behaviour during migration, produces asymmetric spatially synchronous patterns of population dynamics in North American ducks (genus Anas). Chapter IV investigates the dynamics of a Finnish population of skylark (Alauda arvensis), and point out effects of rainfall and habitat quality on population growth. Because the skylark time series and some of the environmental variables included show strong positive autocorrelation, the statistical significances are calculated using a Monte Carlo method, where random autocorrelated time series are generated. Chapter V is a simulation-based study, showing that ignoring observation error in analyses of population time series data can bias the estimated effects and measures of uncertainty, if the environmental variables are autocorrelated. It is concluded that the use of state-space models is an effective way to reach more accurate results. In summary, there are several biological assumptions and methodological issues that can affect the inferential outcome when estimating environmental effects from time series data, and that therefore need special attention. The functional form of the environmental effects and potential interactions between environment and population density are important to deal with. Other issues that should be considered are assumptions about density dependent regulation, modelling potential observation error, and when needed, accounting for spatial and/or temporal autocorrelation.