935 resultados para GATA6 Transcription Factor
Resumo:
Congenital nephrotic syndrome of the Finnish type (NPHS1, CNF) is an autosomal recessive disease, enriched in the Finnish population. NPHS1 is caused by a mutation in the NPHS1 gene. This gene encodes for nephrin, which is a major structural component of the slit diaphragm connecting podocyte foot processes in the glomerular capillary wall. In NPHS1, the genetic defect in nephrin leads to heavy proteinuria already in the newborn period. Finnish NPHS1 patients are nephrectomized at infancy, and after a short period of dialysis the patients receive a kidney transplant, which is the only curative therapy for the disease. In this thesis, we examined the cellular and molecular mechanisms leading to the progression of glomerulosclerosis and tubulointerstitial fibrosis in NPHS1 kidneys. Progressive mesangial expansion in NPHS1 kidneys is caused by mesangial cell hyperplasia and the accumulation of extracellular matrix proteins. Expansion of the extracellular matrix was caused by the normal mesangial cell component, collagen IV. However, no significant changes in mesangial cell phenotype or extracellular matrix component composition were observed. Endotheliosis was the main ultrastructural lesion observed in the endothelium of NPHS1 glomeruli. The abundant expression of vascular endothelial growth factor and its transcription factor hypoxia inducible factor-1 alpha were in accordance with the preserved structure of the endothelium in NPHS1 kidneys. Hypoperfusion of peritubular capillaries and tubulointerstitial hypoxia were evident in NPHS1 kidneys, indicating that these may play an important role in the rapid progression of fibrosis in the kidneys of NPHS1 patients. Upregulation of Angiotensin II was obvious, emphasizing its role in the pathophysiology of NPHS1. Excessive oxidative stress was evident in NPHS1 kidneys, manifested as an increase expression of p22phox, superoxide production, lipid oxide peroxidation and reduced antioxidant activity. In conclusion, our data indicate that mesangial cell proliferation and the accumulation of extracellular matrix accumulation are associated with the obliteration of glomerular capillaries, causing the reduction of circulation in peritubular capillaries. The injury and rarefaction of peritubular capillaries result in impairment of oxygen and nutrient delivery to the tubuli and interstitial cells, which correlates with the fibrosis, tubular atrophy and oxidative stress observed in NPHS1 kidneys.
Resumo:
The prevalence of obesity is increasing at an alarming rate in all age groups worldwide. Obesity is a serious health problem due to increased risk of morbidity and mortality. Although environmental factors play a major role in the development of obesity, the identification of rare monogenic defects in human genes have confirmed that obesity has a strong genetic component. Mutations have been identified in genes encoding proteins of the leptin-melanocortin signaling system, which has an important role in the regulation of appetite and energy balance. The present study aimed at identifying mutations and genetic variations in the melanocortin receptors 2-5 and other genes active on the same signaling pathway accounting for severe early-onset obesity in children and morbid obesity in adults. The main achievement of this thesis was the identification of melanocortin-4 receptor (MC4R) mutations in Finnish patients. Six pathogenic MC4R mutations (308delT, P299H, two S127L and two -439delGC mutations) were identified, corresponding to a prevalence of 3% in severe early-onset obesity. No obesity causing MC4R mutations were found among patients with adult-onset morbid obesity. The MC4R 308delT deletion is predicted to result in a grossly truncated nonfunctional receptor of only 107 amino acids. The C-terminal residues, which are important in MC4R cell surface targeting, are totally absent from the mutant 308delT receptor. In vitro functional studies supported a pathogenic role for the S127L mutation since agonist induced signaling of the receptor was impaired. Cell membrane localization of the S127L receptor did not differ from that of the wild-type receptor, confirming that impaired function of the S127L receptor was due to reduced signaling properties. The P299H mutation leads to intracellular retention of the receptor. The -439delGC deletion is situated at a potential nescient helix-loop-helix 2 (NHLH2) -binding site in the MC4R promoter. It was demonstrated that the transcription factor NHLH2 binds to the consensus sequence at the -439delGC site in vitro, possibly resulting in altered promoter activity. Several genetic variants were identified in the melanocortin-3 receptor (MC3R) and pro-opiomelanocortin (POMC) genes. These polymorphisms do not explain morbid obesity, but the results indicate that some of these genetic variations may be modifying factors in obesity, resulting in subtle changes in obesity-related traits. A risk haplotype for obesity was identified in the ectonucleotide pyrophosphatase phosphodiesterase 1 (ENPP1) gene through a candidate gene single nucleotide polymorphism (SNP) genotyping approach. An ENPP1 haplotype, composed of SNPs rs1800949 and rs943003, was shown to be significantly associated with morbid obesity in adults. Accordingly, the MC3R, POMC and ENPP1 genes represent examples of susceptibility genes in which genetic variants predispose to obesity. In conclusion, pathogenic mutations in the MC4R gene were shown to account for 3% of cases with severe early-onset obesity in Finland. This is in line with results from other populations demonstrating that mutations in the MC4R gene underlie 1-6% of morbid obesity worldwide. MC4R deficiency thus represents the most common monogenic defect causing human obesity reported so far. The severity of the MC4-receptor defect appears to be associated with time of onset and the degree of obesity. Classification of MC4R mutations may provide a useful tool when predicting the outcome of the disease. In addition, several other genetic variants conferring susceptibility to obesity were detected in the MC3R, MC4R, POMC and ENPP1 genes.
Resumo:
Germ cell tumors occur both in the gonads of both sexes and in extra-gonadal sites during adoles-cence and early adulthood. Malignant ovarian germ cell tumors are rare neoplasms accounting for less than 5% of all cases of ovarian malignancy. In contrast, testicular cancer is the most common malignancy among young males. Most of patients survive the disease. Prognostic factors of gonadal germ cell tumors include histology, clinical stage, size of the primary tumor and residua, and levels of tumor markers. Germ cell tumors include heterogeneous histological subgroups. The most common subgroup includes germinomas (ovarian dysgerminoma and testicular seminoma); other subgroups are yolk sac tumors, embryonal carcinomas, immature teratomas and mixed tumors. The origin of germ cell tumors is most likely primordial germ cells. Factors behind germ cell tumor development and differentiation are still poorly known. The purpose of this study was to define novel diagnostic and prognostic factors for malignant gonadal germ cell tumors. In addition, the aim was to shed further light into the molecular mechanisms regulating gonadal germ cell tumorigenesis and differentiation by studying the roles of GATA transcription factors, pluripotent factors Oct-3/4 and AP-2γ, and estrogen receptors. This study revealed the prognostic value of CA-125 in malignant ovarian germ cell tumors. In addition advanced age and residual tumor had more adverse outcome. Several novel markers for histological diagnosis were defined. In the fetal development transcription factor GATA-4 was expressed in early fetal gonocytes and in testicular carcinoma precursor cells. In addition, GATA-4 was expressed in both gonadal germinomas, thus it may play a role in the development and differentiation of the germinoma tumor subtype. Pluripotent factors Oct-3/4 and AP-2γ were expressed in dysgerminomas, thus they could be used in the differential diagnosis of the germ cell tumors. Malignant ovarian germ cell tumors expressed estrogen receptors and their co-regulator SNURF. In addition, estrogen receptor expression was up-regulated by estradiol stimulation. Thus, gonadal steroid hormone burst in puberty may play a role in germ cell tumor development in the ovary. This study shed further light in to the molecular pathology of malignant gonadal germ cell tumors. In addition, some novel diagnostic and prognostic factors were defined. This data may be used in the differential diagnosis of germ cell tumor patients.
Resumo:
Defects in mitochondrial DNA (mtDNA) maintenance cause a range of human diseases, including autosomal dominant progressive external ophthalmoplegia (adPEO). This study aimed to clarify the molecular background of adPEO. We discovered that deoxynucleoside triphosphate (dNTP) metabolism plays a crucial in mtDNA maintenance and were thus prompted to search for therapeutic strategies based on the modulation of cellular dNTP pools or mtDNA copy number. Human mtDNA is a 16.6 kb circular molecule present in hundreds to thousands of copies per cell. mtDNA is compacted into nucleoprotein clusters called nucleoids. mtDNA maintenance diseases result from defects in nuclear encoded proteins that maintain the mtDNA. These syndromes typically afflict highly differentiated, post-mitotic tissues such as muscle and nerve, but virtually any organ can be affected. adPEO is a disease where mtDNA molecules with large-scale deletions accumulate in patients tissues, particularly in skeletal muscle. Mutations in five nuclear genes, encoding the proteins ANT1, Twinkle, POLG, POLG2 and OPA1, have previously been shown to cause adPEO. Here, we studied a large North American pedigree with adPEO, and identified a novel heterozygous mutation in the gene RRM2B, which encodes the p53R2 subunit of the enzyme ribonucleotide reductase (RNR). RNR is the rate-limiting enzyme in dNTP biosynthesis, and is required both for nuclear and mitochondrial DNA replication. The mutation results in the expression of a truncated form of p53R2, which is likely to compete with the wild-type allele. A change in enzyme function leads to defective mtDNA replication due to altered dNTP pools. Therefore, RRM2B is a novel adPEO disease gene. The importance of adequate dNTP pools and RNR function for mtDNA maintenance has been established in many organisms. In yeast, induction of RNR has previously been shown to increase mtDNA copy number, and to rescue the phenotype caused by mutations in the yeast mtDNA polymerase. To further study the role of RNR in mammalian mtDNA maintenance, we used mice that broadly overexpress the RNR subunits Rrm1, Rrm2 or p53R2. Active RNR is a heterotetramer consisting of two large subunits (Rrm1) and two small subunits (either Rrm2 or p53R2). We also created bitransgenic mice that overexpress Rrm1 together with either Rrm2 or p53R2. In contrast to the previous findings in yeast, bitransgenic RNR overexpression led to mtDNA depletion in mouse skeletal muscle, without mtDNA deletions or point mutations. The mtDNA depletion was associated with imbalanced dNTP pools. Furthermore, the mRNA expression levels of Rrm1 and p53R2 were found to correlate with mtDNA copy number in two independent mouse models, suggesting nuclear-mitochondrial cross talk with regard to mtDNA copy number. We conclude that tight regulation of RNR is needed to prevent harmful alterations in the dNTP pool balance, which can lead to disordered mtDNA maintenance. Increasing the copy number of wild-type mtDNA has been suggested as a strategy for treating PEO and other mitochondrial diseases. Only two proteins are known to cause a robust increase in mtDNA copy number when overexpressed in mice; the mitochondrial transcription factor A (TFAM), and the mitochondrial replicative helicase Twinkle. We studied the mechanisms by which Twinkle and TFAM elevate mtDNA levels, and showed that Twinkle specifically implements mtDNA synthesis. Furthermore, both Twinkle and TFAM were found to increase mtDNA content per nucleoid. Increased mtDNA content in mouse tissues correlated with an age-related accumulation of mtDNA deletions, depletion of mitochondrial transcripts, and progressive respiratory dysfunction. Simultaneous overexpression of Twinkle and TFAM led to a further increase in the mtDNA content of nucleoids, and aggravated the respiratory deficiency. These results suggested that high mtDNA levels have detrimental long-term effects in mice. These data have to be considered when developing and evaluating treatment strategies for elevating mtDNA copy number.
Resumo:
Ewing sarcoma is an aggressive and poorly differentiated malignancy of bone and soft tissue. It primarily affects children, adolescents, and young adults, with a slight male predominance. It is characterized by a translocation between chromosomes 11 and 22 resulting in the EWSR1-FLI1fusion transcription factor. The aim of this study is to identify putative Ewing sarcoma target genes through an integrative analysis of three microarray data sets. Array comparative genomic hybridization is used to measure changes in DNA copy number, and analyzed to detect common chromosomal aberrations. mRNA and miRNA microarrays are used to measure expression of protein-coding and miRNA genes, and these results integrated with the copy number data. Chromosomal aberrations typically contain also bystanders in addition to the driving tumor suppressor and oncogenes, and integration with expression helps to identify the true targets. Correlation between expression of miRNAs and their predicted target mRNAs is also evaluated to assess the results of post-transcriptional miRNA regulation on mRNA levels. The highest frequencies of copy number gains were identified in chromosome 8, 1q, and X. Losses were most frequent in 9p21.3, which also showed an enrichment of copy number breakpoints relative to the rest of the genome. Copy number losses in 9p21.3 were found have a statistically significant effect on the expression of MTAP, but not on CDKN2A, which is a known tumor-suppressor in the same locus. MTAP was also down-regulated in the Ewing sarcoma cell lines compared to mesenchymal stem cells. Genes exhibiting elevated expression in association with copy number gains and up-regulation compared to the reference samples included DCAF7, ENO2, MTCP1, andSTK40. Differentially expressed miRNAs were detected by comparing Ewing sarcoma cell lines against mesenchymal stem cells. 21 up-regulated and 32 down-regulated miRNAs were identified, includingmiR-145, which has been previously linked to Ewing sarcoma. The EWSR1-FLI1 fusion gene represses miR-145, which in turn targets FLI1 forming a mutually repressive feedback loop. In addition higher expression linked to copy number gains and compared to mesenchymal stem cells, STK40 was also found to be a target of four different miRNAs that were all down-regulated in Ewing sarcoma cell lines compared to the reference samples. SLCO5A1 was identified as the only up-regulated gene within a frequently gained region in chromosome 8. This region was gained in over 90 % of the cell lines, and also with a higher frequency than the neighboring regions. In addition, SLCO5A1 was found to be a target of three miRNAs that were down-regulated compared to the mesenchymal stem cells.
Resumo:
Prostate cancer is one of the most prevalent cancer types in men. The development of prostate tumors is known to require androgen exposure, and several pathways governing cell growth are deregulated in prostate tumorigenesis. Recent genetic studies have revealed that complex gene fusions and copy - number alterations are frequent in prostate cancer, a unique feature among solid tumors. These chromosomal aberrations are though to arise as a consequence of faulty repair of DNA double strand breaks (DSB). Most repair mechanisms have been studied in detail in cancer cell lines, but how DNA damage is detected and repaired in normal differentiated human cells has not been widely addressed. The events leading to the gene fusions in prostate cancer are under rigorous studies, as they not only shed light on the basic pathobiologic mechanisms but may also produce molecular targets for prostate cancer treatment and prevention. Prostate and seminal vesicles are part of the male reproductive system. They share similar structure and function but differ dramatically in their cancer incidence. Approximately fifty primary seminal vesicle carcinomas have been reported worldwide. Surprisingly, only little is known on why seminal vesicles are resistant to neoplastic changes. As both tissues are androgen dependent, it is a mystery that androgen signaling would only lead to tumors in prostate tissue. In this work, we set up novel ex vivo human tissue culture models of prostate and seminal vesicles, and used them to study how DNA damage is recognized in normal epithelium. One of the major DNA - damage inducible pathways, mediated by the ATM kinase, was robustly activated in all main cell types of both tissues. Interestingly, we discovered that secretory epithelial cells had less histone variant H2A.X and after DNA damage lower levels of H2AX were phosphorylated on serine 139 (γH2AX) than in basal or stromal cells. γH2AX has been considered essential for efficient DSB repair, but as there were no significant differences in the γH2AX levels between the two tissues, it seems more likely that the role of γH2AX is less important in postmitotic cells. We also gained insight into the regulation of p53, an important transcription factor that protects genomic integrity via multiple mechanisms, in human tissues. DSBs did not lead to a pronounced activation of p53, but treatments causing transcriptional stress, on the other hand, were able to launch a notable p53 response in both tissue types. In general, ex vivo culturing of human tissues provided unique means to study differentiated cells in their relevant tissue context, and is suited for testing novel therapeutic drugs before clinical trials. In order to study how prostate and seminal vesicle epithelial cells are able to activate DNA damage induced cell cycle checkpoints, we used primary cultures of prostate and seminal vesicle epithelial cells. To our knowledge, we are the first to report isolation of human primary seminal vesicle cells. Surprisingly, human prostate epithelial cells did not activate cell cycle checkpoints after DSBs in part due to low levels of Wee1A, a kinase regulating CDK activity, while primary seminal vesicle epithelial cells possessed proficient cell cycle checkpoints and expressed high levels of Wee1A. Similarly, seminal vesicle cells showed a distinct activation of the p53 - pathway after DSBs that did not occur in prostate epithelial cells. This indicates that p53 protein function is under different control mechanisms in the two cell types, which together with proficient cell cycle checkpoints may be crucial in protecting seminal vesicles from endogenous and exogenous DNA damaging factors and, as a consequence, from carcinogenesis. These data indicate that two very similar organs of male reproductive system do not respond to DNA damage similarly. The differentiated, non - replicating cells of both tissues were able to recognize DSBs, but under proliferation human prostate epithelial cells had deficient activation of the DNA damage response. This suggests that prostate epithelium is most vulnerable to accumulating genomic aberrations under conditions where it needs to proliferate, for example after inflammatory cellular damage.
Resumo:
Expression of genes involved in methanol metabolism of Pichia pastoris is regulated by Mxr1p, a zinc finger transcription factor. In this study, we studied the target gene specificity of Mxr1p by examining its ability to bind to promoters of genes encoding dihydroxyacetone synthase (DHAS) and peroxin 8 (PEX8), since methanol-inducible expression of these genes is abrogated in mxr1-null mutant strains of P. pastoris. Different regions of DHAS and PEX8 promoter were isolated from P. pastoris genomic DNA and their ability to bind to a recombinant Mxr1p protein containing the N-terminal 150 amino acids, including the zinc finger DNA-binding domain, was examined. These studies reveal that Mxr1p specifically binds to promoter regions containing multiple 5'-CYCC-3' sequences, although all DNA sequences containing the 5'-CYCC-3' motif do not qualify as Mxr1p-binding sites. Key DNA-binding determinants are present outside 5'-CYCC-3' motif and Mxr1p preferably binds to DNA sequences containing 5'-CYCCNY-3' than those containing 5'-CYCCNR-3' sequences. This study provides new insights into the molecular determinants of target gene specificity of Mxr1p, and the methodology described here can be used for mapping Mxr1p-binding sites in other methanol-inducible promoters of P. pastoris. Copyright (C) 2010 John Wiley & Sons, Ltd.
Resumo:
We have identified a methanol- and biotin-starvation-inducible zinc finger protein named ROP [repressor of phosphoenolpyruvate carboxykinase (PEPCK)] in the methylotrophic yeast Pichia pastoris. When P. pastoris strain GS115 (wild-type, WT) is cultured in biotin-deficient, glucose-ammonium (Bio(-)) medium, growth is suppressed due to the inhibition of anaplerotic synthesis of oxaloacetate, catalysed by the biotin-dependent enzyme pyruvate carboxylase (PC). Deletion of ROP results in a strain (Delta ROP) that can grow under biotin-deficient conditions due to derepression of a biotin- and PC-independent pathway of anaplerotic synthesis of oxaloacetate. Northern analysis as well as microarray expression profiling of RNA isolated from WT and Delta ROP strains cultured in Bio(-) medium indicate that expression of the phosphoenolpyruvate carboxykinase gene (PEPCK) is induced in Delta ROP during biotin- or PC-deficiency even under glucose-abundant conditions. There is an excellent correlation between PEPCK expression and growth of Delta ROP in Bio(-) medium, suggesting that ROP-mediated regulation of PEPCK may have a crucial role in the biotin- and PC-independent growth of the Delta ROP strain. To our knowledge, ROP is the first example of a zinc finger transcription factor involved in the catabolite repression of PEPCK in yeast cells cultured under biotin- or PC-deficient and glucose-abundant conditions.
Resumo:
Purpose: Waardenburg syndrome (WS) is characterized by sensorineural hearing loss and pigmentation defects of the eye, skin, and hair. It is caused by mutations in one of the following genes: PAX3 (paired box 3), MITF (microphthalmia-associated transcription factor), EDNRB (endothelin receptor type B), EDN3 (endothelin 3), SNAI2 (snail homolog 2, Drosophila) and SOX10 (SRY-box containing gene 10). Duchenne muscular dystrophy (DMD) is an X-linked recessive disorder caused by mutations in the DMD gene. The purpose of this study was to identify the genetic causes of WS and DMD in an Indian family with two patients: one affected with WS and DMD, and another one affected with only WS. Methods: Blood samples were collected from individuals for genomic DNA isolation. To determine the linkage of this family to the eight known WS loci, microsatellite markers were selected from the candidate regions and used to genotype the family. Exon-specific intronic primers for EDN3 were used to amplify and sequence DNA samples from affected individuals to detect mutations. A mutation in DMD was identified by multiplex PCR and multiplex ligation-dependent probe amplification method using exon-specific probes. Results: Pedigree analysis suggested segregation of WS as an autosomal recessive trait in the family. Haplotype analysis suggested linkage of the family to the WS4B (EDN3) locus. DNA sequencing identified a novel missense mutation p.T98M in EDN3. A deletion mutation was identified in DMD. Conclusions: This study reports a novel missense mutation in EDN3 and a deletion mutation in DMD in the same Indian family. The present study will be helpful in genetic diagnosis of this family and increases the mutation spectrum of EDN3.
Resumo:
The rapid recent increase in microarray-based gene expression studies in the corpus luteum (CL) utilizing macaque models gathered increasing volume of data in publically accessible microarray expression databases. Examining gene pathways in different functional states of CL may help to understand the factors that control luteal function and hence human fertility. Co-regulation of genes in microarray experiments may imply common transcriptional regulation by sequence-specific DNA-binding transcriptional factors. We have computationally analyzed the transcription factor binding sites (TFBS) in a previously reported macaque luteal microarray gene set (n = 15) that are common targets of luteotropin (luteinizing hormone (LH) and human chorionic gonadotropin (hCG)) and luteolysin (prostaglandin (PG) F-2 alpha). This in silico approach can reveal transcriptional networks that control these important genes which are representative of the interplay between luteotropic and luteolytic factors in the control of luteal function. Our computational analyses revealed 6 matrix families whose binding sites are significantly over-represented in promoters of these genes. The roles of these factors are discussed, which might help to understand the transcriptional regulatory network in the control of luteal function. These factors might be promising experimental targets for investigation of human luteal insufficiency. (C) 2012 Elsevier B.V. All rights reserved.
Resumo:
The molecular mechanism of antimony-resistant Leishmania donovani ((SbLD)-L-R)-driven up-regulation of IL-10 and multidrug-resistant protein 1 (MDR1) in infected macrophages (M phi s) has been investigated. This study showed that both promastigote and amastigote forms of (SbLD)-L-R, but not the antimony-sensitive form of LD, express a unique glycan with N-acetylgalactosamine as a terminal sugar. Removal of it either by enzyme treatment or by knocking down the relevant enzyme, galactosyltransferase in (SbLD)-L-R (KD (SbLD)-L-R), compromises the ability to induce the above effects. Infection of M phi s with KD (SbLD)-L-R enhanced the sensitivity toward antimonials compared with infection with (SbLD)-L-R, and infection of BALB/c mice with KD (SbLD)-L-R caused significantly less organ parasite burden compared with infection induced by (SbLD)-L-R. The innate immune receptor, Toll-like receptor 2/6 heterodimer, is exploited by (SbLD)-L-R to activate ERK and nuclear translocation of NF-kappa B involving p50/c-Rel leading to IL-10 induction, whereas MDR1 up-regulation is mediated by PI3K/Akt and the JNK pathway. Interestingly both recombinant IL-10 and (SbLD)-L-R up-regulate MDR1 in M. with different time kinetics, where phosphorylation of PI3K was noted at 12 h and 48 h, respectively, but M phi s derived from IL-10(-/-) mice are unable to show MDR1 up-regulation on infection with (SbLD)-L-R. Thus, it is very likely that an IL-10 surge is a prerequisite for MDR1 up-regulation. The transcription factor important for IL-10-driven MDR1 up-regulation is c-Fos/c-Jun and not NF-kappa B, as evident from studies with pharmacological inhibitors and promoter mapping with deletion constructs.
Resumo:
Background. Interferon gamma (IFN-gamma) increases the expression of multiple genes and responses; however, the mechanisms by which IFN-gamma downmodulates cellular responses is not well understood. In this study, the repression of CCL3 and CCL4 by IFN-gamma and nitric oxide synthase 2 (NOS2) in macrophages and upon Salmonella typhimurium infection of mice was investigated. Methods. Small molecule regulators and adherent peritoneal exudates cells (A-PECs) from Nos2(-/-)mice were used to identify the contribution of signaling molecules during IFN-gamma-mediated in vitro regulation of CCL3, CCL4, and CXCL10. In addition, infection of bone marrow-derived macrophages (BMDMs) and mice (C57BL/6, Ifn-gamma(-/), and Nos2(-/-)) with S. typhimurium were used to gain an understanding of the in vivo regulation of these chemokines. Results. IFN-gamma repressed CCL3 and CCL4 in a signal transducer and activator of transcription 1 (STAT1)-NOS2-p38 mitogen activated protein kinase (p38MAPK)-activating transcription factor 3 (ATF3) dependent pathway in A-PECs. Also, during intracellular replication of S. typhimurium in BMDMs, IFN-gamma and NOS2 repressed CCL3 and CCL4 production. The physiological roles of these observations were revealed during oral infection of mice with S. typhimurium, wherein endogenous IFN-gamma and NOS2 enhanced serum amounts of tumor necrosis factor alpha and CXCL10 but repressed CCL3 and CCL4. Conclusions. This study sheds novel mechanistic insight on the regulation of CCL3 and CCL4 in mouse macrophages and during S. typhimurium oral infection.
Resumo:
Pathogenic mycobacteria employ several immune evasion strategies such as inhibition of class II transactivator (CIITA) and MHC-II expression, to survive and persist in host macrophages. However, precise roles for specific signaling components executing down-regulation of CIITA/MHC-II have not been adequately addressed. Here, we demonstrate that Mycobacterium bovis bacillus Calmette-Guerin (BCG)-mediated TLR2 signaling-induced iNOS/NO expression is obligatory for the suppression of IFN-gamma-induced CIITA/MHC-II functions. Significantly, NOTCH/PKC/MAPK-triggered signaling cross-talk was found critical for iNOS/NO production. NO responsive recruitment of a bifunctional transcription factor, KLF4, to the promoter of CIITA during M. bovis BCG infection of macrophages was essential to orchestrate the epigenetic modifications mediated by histone methyltransferase EZH2 or miR-150 and thus calibrate CIITA/MHC-II expression. NO-dependent KLF4 regulated the processing and presentation of ovalbumin by infected macrophages to reactive T cells. Altogether, our study delineates a novel role for iNOS/NO/KLF4 in dictating the mycobacterial capacity to inhibit CIITA/MHC-II-mediated antigen presentation by infected macrophages and thereby elude immune surveillance.
Resumo:
Mitochondrial biogenesis and morphological changes are associated with tissue-specific functional demand, but the factors and pathways that regulate these processes have not been completely identified. A lack of mitochondrial fusion has been implicated in various developmental and pathological defects. The spatiotemporal regulation of mitochondrial fusion in a tissue such as muscle is not well understood. Here, we show in Drosophila indirect flight muscles (IFMs) that the nuclear-encoded mitochondrial inner membrane fusion gene, Opa1-like, is regulated in a spatiotemporal fashion by the transcription factor/co-activator Erect wing (Ewg). In IFMs null for Ewg, mitochondria undergo mitophagy and/or autophagy accompanied by reduced mitochondrial functioning and muscle degeneration. By following the dynamics of mitochondrial growth and shape in IFMs, we found that mitochondria grow extensively and fuse during late pupal development to form the large tubular mitochondria. Our evidence shows that Ewg expression during early IFM development is sufficient to upregulate Opa1-like, which itself is a requisite for both late pupal mitochondrial fusion and muscle maintenance. Concomitantly, by knocking down Opa1-like during early muscle development, we show that it is important for mitochondrial fusion, muscle differentiation and muscle organization. However, knocking down Opa1-like, after the expression window of Ewg did not cause mitochondrial or muscle defects. This study identifies a mechanism by which mitochondrial fusion is regulated spatiotemporally by Ewg through Opa1-like during IFM differentiation and growth.
Resumo:
Background: During female reproductive cycles, a rapid fall in circulating progesterone (P4) levels is one of the earliest events that occur during induced luteolysis in mammals. In rodents, it is well recognized that during luteolysis, P4 is catabolized to its inactive metabolite, 20alpha-hydroxyprogesterone (20alpha-OHP) by the action of 20alpha-hydroxysteroid dehydrogenase (20alpha-HSD) enzyme and involves transcription factor, Nur77. Studies have been carried out to examine expression of 20alpha-HSD and its activity in the corpus luteum (CL) of buffalo cow. Methods: The expression of 20alpha-HSD across different bovine tissues along with CL was examined by qPCR analysis. Circulating P4 levels were monitored before and during PGF2alpha treatment. Expression of 20alpha-HSD and Nur77 mRNA was determined in CL at different time points post PGF2alpha treatment in buffalo cows. The chromatographic separation of P4 and its metabolite, 20alpha-OHP, in rat and buffalo cow serum samples were performed on reverse phase HPLC system. To further support the findings, 20alpha-HSD enzyme activity was quantitated in cytosolic fraction of CL of both rat and buffalo cow. Results: Circulating P4 concentration declined rapidly in response to PGF2alpha treatment. HPLC analysis of serum samples did not reveal changes in circulating 20alpha-OHP levels in buffalo cows but serum from pseudo pregnant rats receiving PGF2alpha treatment showed an increased 20alpha-OHP level at 24 h post treatment with accompanying decrease in P4 concentration. qPCR expression of 20alpha-HSD in CL from control and PGF2alpha-treated buffalo cows showed higher expression at 3 and 18 h post treatment, but its specific activity was not altered at different time points post PGF2alpha treatment. The Nur77 expression increased several fold 3 h post PGF2alpha treatment similar to the increased expression observed in the PGF2alpha-treated pseudo pregnant rats which perhaps suggest initiation of activation of apoptotic pathways in response to PGF2alpha treatment. Conclusions: The results taken together suggest that synthesis of P4 appears to be primarily affected by PGF2alpha treatment in buffalo cows in contrast to increased metabolism of P4 in rodents.