942 resultados para Functional gene


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Abstract Background Intronic and intergenic long noncoding RNAs (lncRNAs) are emerging gene expression regulators. The molecular pathogenesis of renal cell carcinoma (RCC) is still poorly understood, and in particular, limited studies are available for intronic lncRNAs expressed in RCC Methods Microarray experiments were performed with custom-designed arrays enriched with probes for lncRNAs mapping to intronic genomic regions. Samples from 18 primary RCC tumors and 11 nontumor adjacent matched tissues were analyzed. Meta-analyses were performed with microarray expression data from three additional human tissues (normal liver, prostate tumor and kidney nontumor samples), and with large-scale public data for epigenetic regulatory marks and for evolutionarily conserved sequences. Results A signature of 29 intronic lncRNAs differentially expressed between RCC and nontumor samples was obtained (false discovery rate (FDR) <5%). A signature of 26 intronic lncRNAs significantly correlated with the RCC five-year patient survival outcome was identified (FDR <5%, p-value ≤0.01). We identified 4303 intronic antisense lncRNAs expressed in RCC, of which 22% were significantly (p <0.05) cis correlated with the expression of the mRNA in the same locus across RCC and three other human tissues. Gene Ontology (GO) analysis of those loci pointed to 'regulation of biological processes’ as the main enriched category. A module map analysis of the protein-coding genes significantly (p <0.05) trans correlated with the 20% most abundant lncRNAs, identified 51 enriched GO terms (p <0.05). We determined that 60% of the expressed lncRNAs are evolutionarily conserved. At the genomic loci containing the intronic RCC-expressed lncRNAs, a strong association (p <0.001) was found between their transcription start sites and genomic marks such as CpG islands, RNA Pol II binding and histones methylation and acetylation. Conclusion Intronic antisense lncRNAs are widely expressed in RCC tumors. Some of them are significantly altered in RCC in comparison with nontumor samples. The majority of these lncRNAs is evolutionarily conserved and possibly modulated by epigenetic modifications. Our data suggest that these RCC lncRNAs may contribute to the complex network of regulatory RNAs playing a role in renal cell malignant transformation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

INTRODUCTION: With the aim of searching genetic factors associated with the response to an immune treatment based on autologous monocyte-derived dendritic cells pulsed with autologous inactivated HIV, we performed exome analysis by screening more than 240,000 putative functional exonic variants in 18 HIV-positive Brazilian patients that underwent the immune treatment. METHODS: Exome analysis has been performed using the ILLUMINA Infinium HumanExome BeadChip. zCall algorithm allowed us to recall rare variants. Quality control and SNP-centred analysis were done with GenABEL R package. An in-house implementation of the Wang method permitted gene-centred analysis. RESULTS: CCR4-NOT transcription complex, subunit 1 (CNOT1) gene (16q21), showed the strongest association with the modification of the response to the therapeutic vaccine (p=0.00075). CNOT1 SNP rs7188697 A/G was significantly associated with DC treatment response. The presence of a G allele indicated poor response to the therapeutic vaccine (p=0.0031; OR=33.00; CI=1.74-624.66), and the SNP behaved in a dominant model (A/A vs. A/G+G/G p=0.0009; OR=107.66; 95% CI=3.85-3013.31), being the A/G genotype present only in weak/transient responders, conferring susceptibility to poor response to the immune treatment. DISCUSSION: CNOT1 is known to be involved in the control of mRNA deadenylation and mRNA decay. Moreover, CNOT1 has been recently described as being involved in the regulation of inflammatory processes mediated by tristetraprolin (TTP). The TTP-CCR4-NOT complex (CNOT1 in the CCR4-NOT complex is the binding site for TTP) has been reported as interfering with HIV replication, through post-transcriptional control. Therefore, we can hypothesize that genetic variation occurring in the CNOT1 gene could impair the TTP-CCR4-NOT complex, thus interfering with HIV replication and/or host immune response. CONCLUSIONS: Being aware that our findings are exclusive to the 18 patients studied with a need for replication, and that the genetic variant of CNOT1 gene, localized at intron 3, has no known functional effect, we propose a novel potential candidate locus for the modulation of the response to the immune treatment, and open a discussion on the necessity to consider the host genome as another potential variant to be evaluated when designing an immune therapy study

Relevância:

30.00% 30.00%

Publicador:

Resumo:

It is well-established that the organization of nuclear components influences gene expression processes, yet little is known about the mechanisms that contribute to the spatial co-ordination of nuclear activities. The salivary gland cells of Chironomus tentans provide a suitable model system for studying gene expression in situ, as they allow for direct visualization of the synthesis, processing and export of a specific protein-coding transcript, the Balbiani ring (BR) pre-mRNA, in a nuclear environment in which chromatin and non-chromatin structures can easily be distinguished. The RNAbinding protein Hrp65 has been identified in this model system as a protein associated with non-chromatin nucleoplasmic fibers, referred to as connecting fibers (CFs). The CFs associate with BR RNP particles in the nucleoplasm, suggesting that Hrp65 is involved in mRNA biogenesis at the post-transcriptional level. However, the function of Hrp65 is not known, nor is the function or the composition of CFs. In the work described in this thesis, we have identified by yeast two-hybrid screening and characterized different proteins that bind to Hrp65. These proteins include a novel hnRNP protein in C. tentans named Hrp59, various isoforms of Hrp65, the splicing- and mRNA export factor HEL/UAP56, and a RING-domain protein of unknown function. Immuno-electron microscopy experiments showed that Hrp59 and HEL are present in CFs, and in larger structures in the nucleoplasm of C. tentans salivary gland cells. Hrp59 is a C. tentans homologue of human hnRNP M, and it associates cotranscriptionally with a subset of pre-mRNAs, including its own transcript, in a manner that does not depend quantitatively on the amount of synthesized RNA. Hrp59 accompanies the BR pre-mRNA from the gene to the nuclear envelope, and is released from the BR mRNA at the nuclear pore complex. We have identified the preferred RNA targets of Hrp59 in Drosophila cells, and we have shown that Hrp59 binds preferentially to exonic splicing enhancer sequences. Hrp65 self-associates through an evolutionarily conserved domain that can also mediate heterodimerization of Hrp65 homologues. Different isoforms of Hrp65 interact with each other in all possible combinations, and Hrp65 can oligomerize into complexes of at least six molecules. The interaction between different Hrp65 isoforms is crucial for their intracellular localization, and we have discovered a mechanism by which Hrp65-2 is imported into the nucleus through binding to Hrp65-1. Hrp65 binds to HEL/UAP56 in C. tentans cells. We have analyzed the distribution of the two proteins on polytene chromosomes and in the nucleoplasm of salivary gland cells, and our results suggest that Hrp65 and HEL become associated during posttranscriptional gene expression events. HEL binds to the BR pre-mRNP cotranscriptionally, and incorporation of HEL into the pre-mRNP does not depend on the location of introns along the BR pre-mRNA. HEL accompanies the BR mRNP to the nuclear pore and is released from the BR mRNP during translocation into the cytoplasm.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The corpus luteum (CL) lifespan is characterized by a rapid growth, differentiation and controlled regression of the luteal tissue, accompanied by an intense angiogenesis and angioregression. Indeed, the CL is one of the most highly vascularised tissue in the body with a proliferation rate of the endothelial cells 4- to 20-fold more intense than in some of the most malignant human tumours. This angiogenic process should be rigorously controlled to allow the repeated opportunities of fertilization. After a first period of rapid growth, the tissue becomes stably organized and prepares itself to switch to the phenotype required for its next apoptotic regression. In pregnant swine, the lifespan of the CLs must be extended to support embryonic and foetal development and vascularisation is necessary for the maintenance of luteal function. Among the molecules involved in the angiogenesis, Vascular Endothelial Growth Factor (VEGF) is the main regulator, promoting endothelial cells proliferation, differentiation and survival as well as vascular permeability and vessel lumen formation. During vascular invasion and apoptosis process, the remodelling of the extracellular matrix is essential for the correct evolution of the CL, particularly by the action of specific class of proteolytic enzymes known as matrix metalloproteinases (MMPs). Another important factor that plays a role in the processes of angiogenesis and angioregression during the CL formation and luteolysis is the isopeptide Endothelin-1 (ET-1), which is well-known to be a potent vasoconstrictor and mitogen for endothelial cells. The goal of the present thesis was to study the role and regulation of vascularisation in an adult vascular bed. For this purpose, using a precisely controlled in vivo model of swine CL development and regression, we determined the levels of expression of the members of VEGF system (VEGF total and specific isoforms; VEGF receptor-1, VEGFR-1; VEGF receptor-2, VEGFR-2) and ET- 1 system (ET-1; endothelin converting enzyme-1, ECE-1; endothelin receptor type A, ET-A) as well as the activity of the Ca++/Mg++-dependent endonucleases and gelatinases (MMP-2 and MMP-9). Three experiments were conducted to reach such objectives in CLs isolated from ovaries of cyclic, pregnant or fasted gilts. In the Experiment I, we evaluated the influence of acute fasting on VEGF production and VEGF, VEGFR-2, ET-1, ECE-1 and ET-A mRNA expressions in CLs collected on day 6 after ovulation (midluteal phase). The results indicated a down-regulation of VEGF, VEGFR-2, ET-1 and ECE-1 mRNA expression, although no change was observed for VEGF protein. Furthermore, we observed that fasting stimulated steroidogenesis by luteal cells. On the basis of the main effects of VEGF (stimulation of vessel growth and endothelial permeability) and ET-1 (stimulation of endothelial cell proliferation and vasoconstriction, as well as VEGF stimulation), we concluded that feed restriction possibly inhibited luteal vessel development. This could be, at least in part, compensated by a decrease of vasal tone due to a diminution of ET-1, thus ensuring an adequate blood flow and the production of steroids by the luteal cells. In the Experiment II, we investigated the relationship between VEGF, gelatinases and Ca++/Mg++-dependent endonucleases activities with the functional CL stage throughout the oestrous cycle and at pregnancy. The results demonstrated differential patterns of expression of those molecules in correspondence to the different phases of the oestrous cycle. Immediately after ovulation, VEGF mRNA/protein levels and MMP-9 activity are maximal. On days 5–14 after ovulation, VEGF expression and MMP-2 and -9 activities are at basal levels, while Ca++/Mg++-dependent endonuclease levels increased significantly in relation to day 1. Only at luteolysis (day 17), Ca++/Mg++-dependent endonuclease and MMP-2 spontaneous activity increased significantly. At pregnancy, high levels of MMP-9 and VEGF were observed. These results suggested that during the very early luteal phase, high MMPs activities coupled with high VEGF levels drive the tissue to an angiogenic phenotype, allowing CL growth under LH (Luteinising Hormone) stimulus, while during the late luteal phase, low VEGF and elevate MMPs levels may play a role in the apoptotic tissue and extracellular matrix remodelling during structural luteolysis. In the Experiment III, we described the expression patterns of all distinct VEGF isoforms throughout the oestrous cycle. Furthermore, the mRNA expression and protein levels of both VEGF receptors were also evaluated. Four novel VEGF isoforms (VEGF144, VEGF147, VEGF182, and VEGF164b) were found for the first time in swine and the seven identified isoforms presented four different patterns of expression. All isoforms showed their highest mRNA levels in newly formed CLs (day 1), followed by a decrease during mid-late luteal phase (days 10–17), except for VEGF182, VEGF188 and VEGF144 that showed a differential regulation during late luteal phase (day 14) or at luteolysis (day 17). VEGF protein levels paralleled the most expressed and secreted VEGF120 and VEGF164 isoforms. The VEGF receptors mRNAs showed a different pattern of expression in relation to their ligands, increasing between day 1 and 3 and gradually decreasing during the mid-late luteal phase. The differential regulation of some VEGF isoforms principally during the late luteal phase and luteolysis suggested a specific role of VEGF during tissue remodelling process that occurs either for CL maintenance in case of pregnancy or for noncapillary vessel development essential for tissue removal during structural luteolysis. In summary, our findings allow us to determine relationships among factors involved in the angiogenesis and angioregression mechanisms that take place during the formation and regression of the CL. Thus, CL provides a very interesting model for studying such factors in different fields of the basic research.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The first part of the research project of the Co-Advisorship Ph.D Thesis was aimed to select the best Bifidobacterium longum strains suitable to set the basis of our study. We were looking for strains with the abilities to colonize the intestinal mucosa and with good adhesion capacities, so that we can test these strains to investigate their ability to induce apoptosis in “damaged” intestinal cells. Adhesion and apoptosis are the two process that we want to study to better understand the role of an adhesion protein that we have previously identified and that have top scores homologies with the recent serpin encoding gene identified in B. longum by Nestlè researchers. Bifidobacterium longum is a probiotic, known for its beneficial effects to the human gut and even for its immunomodulatory and antitumor activities. Recently, many studies have stressed out the intimate relation between probiotic bacteria and the GIT mucosa and their influence on human cellular homeostasis. We focused on the apoptotic deletion of cancer cells induced by B. longum. This has been valued in vitro, performing the incubation of three B.longum strains with enterocyte-like Caco- 2 cells, to evidence DNA fragmentation, a cornerstone of apoptosis. The three strains tested were defined for their adhesion properties using adhesion and autoaggregation assays. These features are considered necessary to select a probiotic strain. The three strains named B12, B18 and B2990 resulted respectively: “strong adherent”, “adherent” and “non adherent”. Then, bacteria were incubated with Caco-2 cells to investigate apoptotic deletion. Cocultures of Caco-2 cells with B. longum resulted positive in DNA fragmentation test, only when adherent strains were used (B12 and B18). These results indicate that the interaction with adherent B. longum can induce apoptotic deletion of Caco-2 cells, suggesting a role in cellular homeostasis of the gastrointestinal tract and in restoring the ecology of damaged colon tissues. These results were used to keep on researching and the strains tested were used as recipient of recombinant techniques aimed to originate new B.longum strains with enhanced capacity of apoptotic induction in “damaged” intestinal cells. To achieve this new goal it was decided to clone the serpin encoding gene of B. longum, so that we can understand its role in adhesion and apoptosis induction. Bifidobacterium longum has immunostimulant activity that in vitro can lead to apoptotic response of Caco-2 cell line. It secretes a hypothetical eukaryotic type serpin protein, which could be involved in this kind of deletion of damaged cells. We had previously characterised a protein that has homologies with the hypothetical serpin of B. longum (DD087853). In order to create Bifidobacterium serpin transformants, a B. longum cosmid library was screened with a PCR protocol using specific primers for serpin gene. After fragment extraction, the insert named S1 was sub-cloned into pRM2, an Escherichia coli - Bifidobacterium shuttle vector, to construct pRM3. Several protocols for B. longum transformation were performed and the best efficiency was obtained using MRS medium and raffinose. Finally bacterial cell supernatants were tested in a dotblot assay to detect antigens presence against anti-antitrypsin polyclonal antibody. The best signal was produced by one starin that has been renamed B. longum BLKS 7. Our research study was aimed to generate transformants able to over express serpin encoding gene, so that we can have the tools for a further study on bacterial apoptotic induction of Caco-2 cell line. After that we have originated new trasformants the next step to do was to test transformants abilities when exposed to an intestinal cell model. In fact, this part of the project was achieved in the Department of Biochemistry of the Medical Faculty of the University of Maribor, guest of the abroad supervisor of the Co-Advisorship Doctoral Thesis: Prof. Avrelija Cencic. In this study we examined the probiotic ability of some bacterial strains using intestinal cells from a 6 years old pig. The use of intestinal mammalian cells is essential to study this symbiosis and a functional cell model mimics a polarised epithelium in which enterocytes are separated by tight junctions. In this list of strains we have included the Bifidobacterium longum BKS7 transformant strain that we have previously originated; in order to compare its abilities. B. longum B12 wild type and B. longum BKS7 transformant and eight Lactobacillus strains of different sources were co-cultured with porcine small intestine epithelial cells (PSI C1) and porcine blood monocytes (PoM2) in Transwell filter inserts. The strains, including Lb. gasseri, Lb. fermentum, Lb. reuterii, Lb. plantarum and unidentified Lactobacillus from kenyan maasai milk and tanzanian coffee, were assayed for activation of cell lines, measuring nitric oxide by Griess reaction, H202 by tetramethylbenzidine reaction and O2 - by cytochrome C reduction. Cytotoxic effect by crystal violet staining and induction on metabolic activity by MTT cell proliferation assay were tested too. Transepithelial electrical resistance (TER) of polarised PSI C1 was measured during 48 hours co-culture. TER, used to observe epithelium permeability, decrease during pathogenesis and tissue becomes permeable to ion passive flow lowering epithelial barrier function. Probiotics can prevent or restore increased permeability. Lastly, dot-blot was achieved against Interleukin-6 of treated cells supernatants. The metabolic activity of PoM2 and PSI C1 increased slightly after co-culture not affecting mitochondrial functions. No strain was cytotoxic over PSI C1 and PoM2 and no cell activation was observed, as measured by the release of NO2, H202 and O2 - by PoM2 and PSI C1. During coculture TER of polarised PSI C1 was two-fold higher comparing with constant TER (~3000 ) of untreated cells. TER raise generated by bacteria maintains a low permeability of the epithelium. During treatment Interleukin-6 was detected in cell supernatants at several time points, confirming immunostimulant activity. All results were obtained using Lactobacillus paracasei Shirota e Carnobacterium divergens as controls. In conclusion we can state that both the list of putative probiotic bacteria and our new transformant strain of B. longum are not harmful when exposed to intestinal cells and could be selected as probiotics, because can strengthen epithelial barrier function and stimulate nonspecific immunity of intestinal cells on a pig cell model. Indeed, we have found out that none of the strains tested that have good adhesion abilities presents citotoxicity to the intestinal cells and that non of the strains tested can induce cell lines to produce high level of ROS, neither NO2. Moreover we have assayed even the capacity of producing certain citokynes that are correlated with immune response. The detection of Interleukin-6 was assayed in all our samples, including B.longum transformant BKS 7 strain, this result indicates that these bacteria can induce a non specific immune response in the intestinal cells. In fact, when we assayed the presence of Interferon-gamma in cells supernatant after bacterial exposure, we have no positive signals, that means that there is no activation of a specific immune response, thus confirming that these bacteria are not recognize as pathogen by the intestinal cells and are certainly not harmful for intestinal cells. The most important result is the measure of Trans Epithelial Electric Resistance that have shown how the intestinal barrier function get strengthen when cells are exposed to bacteria, due to a reduction of the epithelium permeability. We have now a new strain of B. longum that will be used for further studies above the mechanism of apoptotic induction to “damaged cells” and above the process of “restoring ecology”. This strain will be the basis to originate new transformant strains for Serpin encoding gene that must have better performance and shall be used one day even in clinical cases as in “gene therapy” for cancer treatment and prevention.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The cathepsin enzymes represent an important family of lysosomal proteinases with a broad spectrum of functions in many, if not in all, tissues and cell types. In addition to their primary role during the normal protein turnover, they possess highly specific proteolytic activities, including antigen processing in the immune response and a direct role in the development of obesity and tumours. In pigs, the involvement of cathepsin enzymes in proteolytic processes have important effects during the conversion of muscle to meat, due to their influence on meat texture and sensory characteristics, mainly in seasoned products. Their contribution is fundamental in flavour development of dry-curing hams. However, several authors have demonstrated that high cathepsin activity, in particular of cathepsin B, is correlated to defects of these products, such as an excessive meat softness together with abnormal free tyrosine content, astringent or metallic aftertastes and formation of a white film on the cut surface. Thus, investigation of their genetic variability could be useful to identify DNA markers associated with these dry cured hams parameters, but also with meat quality, production and carcass traits in Italian heavy pigs. Unfortunately, no association has been found between cathepsin markers and meat quality traits so far, in particular with cathepsin B activity, suggesting that other genes, besides these, affect meat quality parameters. Nevertheless, significant associations were observed with several carcass and production traits in pigs. A recent study has demonstrated that different single nucleotide polymorphisms (SNPs) localized in cathepsin D (CTSD), F (CTSF), H and Z genes were highly associated with growth, fat deposition and production traits in an Italian Large White pig population. The aim of this thesis was to confirm some of these results in other pig populations and identify new cathepsin markers in order to evaluate their effects on cathepsin activity and other production traits. Furthermore, starting from the data obtained in previous studies on CTSD gene, we also analyzed the known polymorphism located in the insulin-like growth factor 2 gene (IGF2 intron3-g.3072G>A). This marker is considered the causative mutation for the quantitative trait loci (QTL) affecting muscle mass and fat deposition in pigs. Since IGF2 maps very close to CTSD on porcine chromosome (SSC) 2, we wanted to clarify if the effects of the CTSD marker were due to linkage disequilibrium with the IGF2 intron3-g.3072G>A mutation or not. In the first chapter, we reported the results from these two SSC2 gene markers. First of all, we evaluated the effects of the IGF2 intron3-g.3072G>A polymorphism in the Italian Large White breed, for which no previous studies have analysed this marker. Highly significant associations were identified with all estimated breeding values for production and carcass traits (P<0.00001), while no effects were observed for meat quality traits. Instead, the IGF2 intron3-g.3072G>A mutation did not show any associations with the analyzed traits in the Italian Duroc pigs, probably due to the low level of variability at this polymorphic site for this breed. In the same Duroc pig population, significant associations were obtained for the CTSD marker for all production and carcass traits (P < 0.001), after excluding possible confounding effects of the IGF2 mutation. The effects of the CTSD g.70G>A polymorphism were also confirmed in a group of Italian Large White pigs homozygous for the IGF2 intron3-g.3072G allele G (IGF2 intron3-g.3072GG) and by haplotype analysis between the markers of the two considered genes. Taken together, all these data indicated that the IGF2 intron3-g.3072G>A mutation is not the only polymorphism affecting fatness and muscle deposition in pigs. In the second chapter, we reported the analysis of two new SNPs identified in cathepsin L (CTSL) and cathepsin S (CTSS) genes and the association results with meat quality parameters (including cathepsin B activity) and several production traits in an Italian Large White pig population. Allele frequencies of these two markers were evaluated in 7 different pig breeds. Furthermore, we mapped using a radiation hybrid panel the CTSS gene on SSC4. Association studies with several production traits, carried out in 268 Italian Large White pigs, indicated positive effects of the CTSL polymorphism on average daily gain, weight of lean cuts and backfat thickness (P<0.05). The results for these latter traits were also confirmed using a selective genotype approach in other Italian Large White pigs (P<0.01). In the 268 pig group, the CTSS polymorphism was associated with feed:gain ratio and average daily gain (P<0.05). Instead, no association was observed between the analysed markers and meat quality parameters. Finally, we wanted to verify if the positive results obtained for the cathepsin L and S markers and for other previous identified SNPs (cathepsin F, cathepsin Z and their inhibitor cystatin B) were confirmed in the Italian Duroc pig breed (third chapter). We analysed them in two groups of Duroc pigs: the first group was made of 218 performance-tested pigs not selected by any phenotypic criteria, the second group was made of 100 Italian Duroc pigs extreme and divergent for visible intermuscular fat trait. In the first group, the CTSL polymorphism was associated with weight of lean cuts (P<0.05), while suggestive associations were obtained for average daily gain and backfat thickness (P<0.10). Allele frequencies of the CTSL gene marker also differed positively among the visible intermuscular extreme tails. Instead, no positive effects were observed for the other DNA markers on the analysed traits. In conclusion, in agreement with the present data and for the biological role of these enzymes, the porcine CTSD and CTSL markers: a) may have a direct effect in the biological mechanisms involved in determining fat and lean meat content in pigs, or b) these markers could be very close to the putative functional mutation(s) present in other genes. These findings have important practical applications, in particular the CTSD and CTSL mutations could be applied in a marker assisted selection (MAS) both in the Italian Large White and Italian Duroc breeds. Marker assisted selection could also increase in efficiency by adding information from the cathepsin S genotype, but only in the Italian Large White breed.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The dolphin (Tursiops truncatus) is a mammal that is adapted to life in a totally aquatic environment. Despite the popularity and even iconic status of the dolphin, our knowledge of its physiology, its unique adaptations and the effects on it of environmental stressors are limited. One approach to improve this limited understanding is the implementation of established cellular and molecular methods to provide sensitive and insightful information for dolphin biology. We initiated our studies with the analysis of wild dolphin peripheral blood leukocytes, which have the potential to be informative of the animal’s global immune status. Transcriptomic profiles from almost 200 individual samples were analyzed using a newly developed species-specific microarray to assess its value as a prognostic and diagnostic tool. Functional genomics analyses were informative of stress-induced gene expression profiles and also of geographical location specific transcriptomic signatures, determined by the interaction of genetic, disease and environmental factors. We have developed quantitative metrics to unambiguously characterize the phenotypic properties of dolphin cells in culture. These quantitative metrics can provide identifiable characteristics and baseline data which will enable identification of changes in the cells due to time in culture. We have also developed a novel protocol to isolate primary cultures from cryopreserved tissue of stranded marine mammals, establishing a tissue (and cell) biorepository, a new approach that can provide a solution to the limited availability of samples. The work presented represents the development and application of tools for the study of the biology, health and physiology of the dolphin, and establishes their relevance for future studies of the impact on the dolphin of environmental infection and stress.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Ziel dieser Arbeit war es, die funktionelle Bedeutung des Drosophila melanogaster tumor suppressor Gens lethal(2)tumorous imaginal discs (l(2)tid) durch die Identifikation von molekularen Partnern der vom Gen kodierten Proteine zu etablieren. Mit dem Screening einer Expressionsbibliothek mittels des Hefe-Di-Hybrid-Systems wurde das Protein Patched (Ptc) als ein neues Tid-bindendes Protein identifiziert. Ptc ist ein Zentralregulator der Hedhehog-Signalkette. Diese ist in der Entwicklung konserviert und in manchen humanen Krebsarten verwickelt. Die Tid/Ptc-Interaktion wurde mittels unabhängigen biochemischen Methoden wie dem GST-pulldown-Test oder der Immunopräzipitation überprüft. Außerdem ergaben funktionelle Studien in tumorosen Imaginalscheiben einen möglichen inhibitorischen Effekt von Tid über die Hh Signaltransduktion.Im letzten Teil dieser Arbeit wurde die Interaktion zwischen Tid und dem E-APC-Protein (Adenomatous polyposis coli) bewiesen. Polakis und seine Gruppe zeigten durch Studien mit dem Hefe-Di-Hybrid-System und in vitro, dass das hTid mit dem APC-Protein interagiert. Um dies auch auf Drosophila-Ebene zu überprüfen, wurden Immunopräzipitation-Studien mit den Drosophila-Gegenstücken durchgeführt. Diese Studien zeigen zum ersten Mal eine direkte Interaktion beider Proteine in vivo.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Introduction: Brief overview of Bone Development Disorders of the Skeleton Cartilage-Hair-Hypoplasia The RMRP gene Specific Aims Material and Methods Results: Clinical Studies Mutation Screen of CHH patients Search for Modifiers Functional Studies of human RMRP Mouse Studies Yeast Studies Discussion: Conclusions Summmary Appendix

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Animal neocentromeres are defined as ectopic centromeres that have formed in non-centromeric locations and avoid some of the features, like the DNA satellite sequence, that normally characterize canonical centromeres. Despite this, they are stable functional centromeres inherited through generations. The only existence of neocentromeres provide convincing evidence that centromere specification is determined by epigenetic rather than sequence-specific mechanisms. For all this reasons, we used them as simplified models to investigate the molecular mechanisms that underlay the formation and the maintenance of functional centromeres. We collected human cell lines carrying neocentromeres in different positions. To investigate the region involved in the process at the DNA sequence level we applied a recent technology that integrates Chromatin Immuno-Precipitation and DNA microarrays (ChIP-on-chip) using rabbit polyclonal antibodies directed against CENP-A or CENP-C human centromeric proteins. These DNA binding-proteins are required for kinetochore function and are exclusively targeted to functional centromeres. Thus, the immunoprecipitation of DNA bound by these proteins allows the isolation of centromeric sequences, including those of the neocentromeres. Neocentromeres arise even in protein-coding genes region. We further analyzed if the increased scaffold attachment sites and the corresponding tighter chromatin of the region involved in the neocentromerization process still were permissive or not to transcription of within encoded genes. Centromere repositioning is a phenomenon in which a neocentromere arisen without altering the gene order, followed by the inactivation of the canonical centromere, becomes fixed in population. It is a process of chromosome rearrangement fundamental in evolution, at the bases of speciation. The repeat-free region where the neocentromere initially forms, progressively acquires extended arrays of satellite tandem repeats that may contribute to its functional stability. In this view our attention focalized to the repositioned horse ECA11 centromere. ChIP-on-chip analysis was used to define the region involved and SNPs studies, mapping within the region involved into neocentromerization, were carried on. We have been able to describe the structural polymorphism of the chromosome 11 centromeric domain of Caballus population. That polymorphism was seen even between homologues chromosome of the same cells. That discovery was the first described ever. Genomic plasticity had a fundamental role in evolution. Centromeres are not static packaged region of genomes. The key question that fascinates biologists is to understand how that centromere plasticity could be combined to the stability and maintenance of centromeric function. Starting from the epigenetic point of view that underlies centromere formation, we decided to analyze the RNA content of centromeric chromatin. RNA, as well as secondary chemically modifications that involve both histones and DNA, represents a good candidate to guide somehow the centromere formation and maintenance. Many observations suggest that transcription of centromeric DNA or of other non-coding RNAs could affect centromere formation. To date has been no thorough investigation addressing the identity of the chromatin-associated RNAs (CARs) on a global scale. This prompted us to develop techniques to identify CARs in a genome-wide approach using high-throughput genomic platforms. The future goal of this study will be to focalize the attention on what strictly happens specifically inside centromere chromatin.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Grape berry is considered a non climacteric fruit, but there are some evidences that ethylene plays a role in the control of berry ripening. This PhD thesis aimed to give insights in the role of ethylene and ethylene-related genes in the regulation of grape berry ripening. During this study a small increase in ethylene concentration one week before véraison has been measured in Vitis vinifera L. ‘Pinot Noir’ grapes confirming previous findings in ‘Cabernet Sauvignon’. In addition, ethylene-related genes have been identified in the grapevine genome sequence. Similarly to other species, biosynthesis and ethylene receptor genes are present in grapevine as multi-gene families and their expression appeared tissue or developmental specific. All the other elements of the ethylene signal transduction cascade were also identified in the grape genome. Among them, there were ethylene response factors (ERF) which modulate the transcription of many effector genes in response to ethylene. In this study seven grapevine ERFs have been characterized and they showed tissue and berry development specific expression profiles. Two sequences, VvERF045 and VvERF063, seemed likely involved in berry ripening control due to their expression profiles and their sequence annotation. VvERF045 was induced before véraison and was specific of the ripe berry, by sequence similarity it was likely a transcription activator. VvERF063 displayed high sequence similarity to repressors of transcription and its expression, very high in green berries, was lowest at véraison and during ripening. To functionally characterize VvERF045 and VvERF063, a stable transformation strategy was chosen. Both sequences were cloned in vectors for over-expression and silencing and transferred in grape by Agrobacterium-mediated or biolistic-mediated gene transfer. In vitro, transgenic VvERF045 over-expressing plants displayed an epinastic phenotype whose extent was correlated to the transgene expression level. Four pathogen stress response genes were significantly induced in the transgenic plants, suggesting a putative function of VvERF045 in biotic stress defense during berry ripening. Further molecular analysis on the transgenic plants will help in identifying the actual VvERF045 target genes and together with the phenotypic characterization of the adult transgenic plants, will allow to extensively define the role of VvERF045 in berry ripening.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Cancer is a multi-step process in which both the activation of oncogenes and the inactivation of tumor suppressor genes alter the normal cellular programs to a state of proliferation and growth. The regulation of a number of tumor suppressor genes and the mechanism underlying the tumor suppression have been intensively studied. Hugl-1 and Hugl-2, the human homologues of Drosophila lgl are shown to be down-regulated in a variety of cancers including breast, colon, lung and melanoma, but the mechanism responsible for loss of expression is not yet known. The regulation of gene expression is influenced by factors inducing or repressing transcription. The present study was focused on the identification and characterization of the active promoters of Hugl-1 and Hugl-2. Further, the regulation of the promoter and functional consequences of this regulation by specific transcription factors was analyzed. Experiments to delineate the function of the mouse homologue of Hugl-2, mgl2 using transgenic mice model were performed. This study shows that the active promoter for both Hugl-1 and Hugl-2 is located 1000bp upstream of transcription start sites. The study also provides first insight into the regulation of Hugl-2 by an important EMT transcriptional regulator, Snail. Direct binding of Snail to four E-boxes present in Hugl-2 promoter region results in repression of Hugl-2 expression. Hugl-1 and Hugl-2 plays pivotal role in establishment and maintenance of cell polarity in a diversity of cell types and organisms. Loss of epithelial cell polarity is a prerequisite for cancer progression and metastasis and is an important step in inducing EMT in cells. Regulation of Hugl-2 by Snail suggests one of the initial events towards loss of epithelial cell polarity during Snail-mediated EMT. Another important finding of this study is the induction of Hugl-2 expression can reverse the Snail-driven EMT. Inducing Hugl-2 in Snail expressing cells results in the re-expression of epithelial markers E-cadherin and Cytokeratin-18. Further, Hugl-2 also reduces the rate of tumor growth, cell migration and induces the epithelial phenotype in 3D culture model in cells expressing Snail. Studies to gain insight into the signaling pathways involved in reversing Snail-mediated EMT revealed that induction of Hugl-2 expression interferes with the activation of extracellular receptor kinase, Erk. Functional aspects of mammalian lgl in vivo was investigated by establishing mgl2 conditional knockout mice. Though disruption of mgl2 gene in hepatic tissues did not alter the growth and development, ubiquitous disruption of mgl2 gene causes embryonic lethality which is evident by the fact that no mgl2-/- mice were born.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Bioinformatics, in the last few decades, has played a fundamental role to give sense to the huge amount of data produced. Obtained the complete sequence of a genome, the major problem of knowing as much as possible of its coding regions, is crucial. Protein sequence annotation is challenging and, due to the size of the problem, only computational approaches can provide a feasible solution. As it has been recently pointed out by the Critical Assessment of Function Annotations (CAFA), most accurate methods are those based on the transfer-by-homology approach and the most incisive contribution is given by cross-genome comparisons. In the present thesis it is described a non-hierarchical sequence clustering method for protein automatic large-scale annotation, called “The Bologna Annotation Resource Plus” (BAR+). The method is based on an all-against-all alignment of more than 13 millions protein sequences characterized by a very stringent metric. BAR+ can safely transfer functional features (Gene Ontology and Pfam terms) inside clusters by means of a statistical validation, even in the case of multi-domain proteins. Within BAR+ clusters it is also possible to transfer the three dimensional structure (when a template is available). This is possible by the way of cluster-specific HMM profiles that can be used to calculate reliable template-to-target alignments even in the case of distantly related proteins (sequence identity < 30%). Other BAR+ based applications have been developed during my doctorate including the prediction of Magnesium binding sites in human proteins, the ABC transporters superfamily classification and the functional prediction (GO terms) of the CAFA targets. Remarkably, in the CAFA assessment, BAR+ placed among the ten most accurate methods. At present, as a web server for the functional and structural protein sequence annotation, BAR+ is freely available at http://bar.biocomp.unibo.it/bar2.0.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Candidate vaccines based on the highly attenuated orthopoxvirus strain MVA are tested against various infectious and cancer diseases and, more profound, vaccines based on wildtype and recombinant viruses have been found safe and immunogenic in clinical trials. Compared to conventional vaccine strains, MVA lacks many functional genes for potentially important regulators of virus-host interactions. However, some gene functions responsible for counteraction of cellular antiviral pathways are still conserved in the genome of MVA and the inhibition of apoptosis seems to be one important mechanism, the virus is still able to interact with.rnrnVaccinia viruses encode several proteins which prevent the induction of virus-induced apoptosis. The vaccinia virus anti-apoptotic protein F1 was shown to counteract the activation of the mitochondrial pathway of apoptosis in a highly effective manner. Another vaccinia virus protein, N1, like F1 shows structural and functional similarity to members of the cellular anti-apoptotic bcl-2 family and was also shown to inhibit apoptosis. The vaccinia virus early protein E3 inhibits programmed cell death by binding to and sequestration of dsRNA molecules, normally inducing cellular antiviral pathways also driving the induction of apoptosis. All three anti-apoptotic genes were functionally analyzed during this work.rn

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Enterobacteriaceae genomes evolve through mutations, rearrangements and horizontal gene transfer (HGT). The latter evolutionary pathway works through the acquisition DNA (GEI) modules of foreign origin that enhances fitness of the host to a given environment. The genome of E. coli IHE3034, a strain isolated from a case of neonatal meningitis, has recently been sequenced and its subsequent sequence analysis has predicted 18 possible GEIs, of which: 8 have not been previously described, 5 fully meet the pathogenic island definition and at least 10 that seem to be of prophagic origin. In order to study the GEI distribution of our reference strain, we screened for the presence 18 GEIs a panel of 132 strains, representative of E. coli diversity. Also, using an inverse nested PCR approach we identified 9 GEI that can form an extrachromosomal circular intermediate (CI) and their respective attachment sites (att). Further, we set up a qPCR approach that allowed us to determine the excision rates of 5 genomic islands in different growth conditions. Four islands, specific for strains appertaining to the sequence type complex 95 (STC95), have been deleted in order to assess their function in a Dictyostelium discoideum grazing assays. Overall, the distribution data presented here indicate that 16 IHE3034 GEIs are more associated to the STC95 strains. Also the functional and genetic characterization has uncovered that GEI 13, 17 and 19 are involved in the resistance to phagocitation by Dictyostelium d thus suggesting a possible role in the adaptation of the pathogen during certain stages of infection.