816 resultados para Electrophoretic depositions


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Background: Antigen B (AgB) is the major protein secreted by the Echinococcus granulosus metacestode and is involved in key host-parasite interactions during infection. The full comprehension of AgB functions depends on the elucidation of several structural aspects that remain unknown, such as its subunit composition and oligomeric states. Methodology/Principal Findings: The subunit composition of E. granulosus AgB oligomers from individual bovine and human cysts was assessed by mass spectrometry associated with electrophoretic analysis. AgB8/1, AgB8/2, AgB8/3 and AgB8/4 subunits were identified in all samples analyzed, and an AgB8/2 variant (AgB8/2v8) was found in one bovine sample. The exponentially modified protein abundance index (emPAI) was used to estimate the relative abundance of the AgB subunits, revealing that AgB8/1 subunit was relatively overrepresented in all samples. The abundance of AgB8/3 subunit varied between bovine and human cysts. The oligomeric states formed by E. granulosus AgB and recombinant subunits available, rAgB8/1, rAgB8/2 and rAgB8/3, were characterized by native PAGE, light scattering and microscopy. Recombinant subunits showed markedly distinct oligomerization behaviors, forming oligomers with a maximum size relation of rAgB8/3 >rAgB8/2>rAgB8/1. Moreover, the oligomeric states formed by rAgB8/3 subunit were more similar to those observed for AgB purified from hydatid fluid. Pressure-induced dissociation experiments demonstrated that the molecular assemblies formed by the more aggregative subunits, rAgB8/2 and rAgB8/3, also display higher structural stability. Conclusions/Significance: For the first time, AgB subunit composition was analyzed in samples from single hydatid cysts, revealing qualitative and quantitative differences between samples. We showed that AgB oligomers are formed by different subunits, which have distinct abundances and oligomerization properties. Overall, our findings have significantly contributed to increase the current knowledge on AgB expression and structure, highlighting issues that may help to understand the parasite adaptive response during chronic infection.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Holsback L., Pena H.F.J., Ragozo A., Lopes E. G., Gennari S. M. & Soares R. M. 2012. Serologic and molecular diagnostic and bioassay in mice for detection of Toxoplasma gondii in free range chickens from Pantanal of Mato Grosso do Sul. Pesquisa Veterinaria Brasileira 32(8): 721-726. Setor de Veterinaria e Producao Animal, Universidade Estadual do Norte do Parana, Campus Luiz Meneghel, Rodovia BR 369 Km 54, Bandeirantes, PR 86360-000, Brazil. E-mail: lhsfertonani@uenp.edu.br The aim of this study was to investigate the occurrence of Toxoplasma gondii and compare the results obtained in the Modified Agglutination Test (MAT), Polimerase Chain Reaction (PCR) and bioassay in mice. In order to accomplish this, 40 free-range chickens from eight farms in neighboring areas to the Pantanal in Nhecolandia, Mato Grosso do Sul, were euthanized and blood samples, brain and heart were collected. The occurrence of anti-T. gondii antibodies found in chickens was 67.5% (27 samples), considering as a cutoff point the dilution 1:5. Among the samples analyzed, 7 (25.9%) were positive in the dilution 1: 5, 3 (11.1%) in 1: 10, 2 (7.4%) in 1: 20, 3 (11.1%) in 1: 320, 1 (3.7%) in 1: 640, 3 (11.1%) in 1: 1280, 2 (7.4%) in 1: 2560, 4 (14.8%) in 1: 5120 and 2 (7.4%) in 1: 10.240. From the mixture of tissue samples (brain and heart) from the chickens analyzed, 16 (40%) presented electrophoretic bands compatible with T. gondii by PCR (gene B1). In the comparison of techniques, 59.26% positivity in PCR was revealed among animals that were seropositive in MAT (cutoff 1: 5). From 141 inoculated mice, six (4.44%) died of acute toxoplasmosis between 15 and 23 days after inoculation. Surviving mice were sacrificed at 74 days after inoculation, and a total of 28 cysts were found in the brains of 10 distinct groups. From the seropositive hens, 27 bioassays were performed and 11 (40.7%) isolates were obtained. A greater number of isolations happened in mice that were inoculated with tissues from chickens that had high titers for anti-T. gondii antibodies. Chronic infection in mice was observed in nine groups (33.3%) from five different properties. Among the surviving mice, 25.6% were positive for T. gondii in MAT (1: 25). From mice positive in PCR, 87.5% were also positive in MAT. Among the PCR-negative mice, 5.2% were positive for T. gondii in MAT. It can be concluded through this study that the occurrence of infecton by T. gondii in the rural properties studied was high, that PCR directed to gene B1 does not confirm the viability of the parasite, but it can be used as a screening method for the selection of chickens infected by T. gondii, that the animals with titer greater than 10 must be prioritized for the selection of animals for bioassay, since for them, the chances of isolating the parasite are greater and that seroconversion in experimentally infected mice is not a good indicator for isolating the agent.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Background: Increased plasma concentrations of free fatty acids (FFA) can lead to insulin resistance in skeletal muscle, impaired effects on mitochondrial function, including uncoupling of oxidative phosphorylation and decrease of endogenous antioxidant defenses. Nitric oxide (NO) is a highly diffusible gas that presents a half-life of 5-10 seconds and is involved in several physiological and pathological conditions. The effects of palmitic acid on nitric oxide (NO) production by rat skeletal muscle cells and the possible mechanism involved were investigated. Methods: Primary cultured rat skeletal muscle cells were treated with palmitic acid and NO production was assessed by nitrite measurement (Griess method) and 4,5-diaminofluorescein diacetate (DAF-2-DA) assay. Nuclear factor-kappa B (NF-kappa B) activation was evaluated by electrophoretic mobility shift assay and iNOS protein content by western blotting. Results: Palmitic acid treatment increased nitric oxide production. This effect was abolished by treatment with NOS inhibitors, L-nitro-arginine (LNA) and L-nitro-arginine methyl esther (L-NAME). NF-kappa B activation and iNOS content were increased due to palmitic acid treatment. The participation of superoxide on nitric oxide production was investigated by incubating the cells with DAF-2-DA in the presence or absence of palmitic acid, a superoxide generator system (X-XO), a mixture of NOS inhibitors and SOD-PEG (superoxide dismutase linked to polyethylene glycol). Palmitic acid and X-XO system increased NO production and this effect was abolished when cells were treated with NOS inhibitors and also with SOD-PEG. Conclusions: In summary, palmitic acid stimulates NO production in cultured skeletal muscle cells through production of superoxide, nuclear factor-kappa B activation and increase of iNOS protein content. Copyright (C) 2012 S. Karger AG, Basel

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Ocular enucleation produces significant morphological and physiological changes in central visual areas. However, our knowledge of the molecular events resulting from eye enucleation in visual brain areas remains elusive. We characterized here the transcription nuclear factor kappa-B (NF-kappa B) activation induced by ocular enucleation in the rat superior colliculus (SC). We also tested the effectiveness of the synthetic glucocorticoid dexamethasone in inhibiting its activation. Electrophoretic mobility shift assays to detect NF-kappa B indicated that this transcription factor is activated in the SC from 1 h to day 15 postlesion. The expression of p65 and p50 proteins in the nuclear extracts was also increased. Dexamethasone treatment was able to significantly inhibit NF-kappa B activation. These findings suggest that this transcriptional factor is importantly involved in the visual system short-term processes that ensue after retinal lesions in the adult brain. (C) 2012 Elsevier Ireland Ltd. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Glycosylation is an important post-translational modification of snake venom proteins and contributes to venom proteome complexity. Many snake venom components are known to be glycosylated, however, very little is known about the carbohydrate structures present in venom glycoproteins. Previous studies showed that the ontogenetic shift in diet, from ectothermic prey in early life to endothermic prey in adulthood, and shift in animal size are associated with changes in the venom proteome of the snake Bothrops jararaca. In this study we explored the composition of the N-glycome released from newborn and adult B. jararaca venom proteins. We used an ion trap mass spectrometer (IT-MS) to disassemble glycan structures based on the use of several pathways of MS (MSn) and demonstrate the presence of some structural isomers in both newborn and adult venom B. jararaca N-glycans. The main N-glycans identified in both venoms are of the hybrid/complex type however some mannose-rich type structures were also detected. The N-glycan composition of newborn and adult venoms did not vary indicating that differences in the utilization of the N-glycosylation motif could be the explanation for the differences in the glycosylation levels indicated by the differential electrophoretic profiles previously reported for B. jararaca newborn and adult venoms. (C) 2011 Elsevier B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Evidences have suggested that the endocannabinoid system is overactive in obesity, resulting in enhanced endocannabinoid levels in both circulation and visceral adipose tissue. The blockade of cannabinoid receptor type 1 (CB1) has been proposed for the treatment of obesity. Besides loss of body weight, CB1 antagonism improves insulin sensitivity, in which the glucose transporter type 4 (GLUT4) plays a key role. The aim of this study was to investigate the modulation of GLUT4-encoded gene (Slc2a4 gene) expression by CB1 receptor. For this, 3T3-L1 adipocytes were incubated in the presence of a highly selective CB1 receptor agonist (1 mu M arachidonyl-2'-chloroethylamide) and/or a CB1 receptor antagonist/inverse agonist (0.1, 0.5, or 1 mu M AM251, 1-(2,4-dichlorophenyl)-5-(4-iodophenyl)-4-methyl-N-1-piperidinyl-1H-pyrazole-3-carboxamide). After acute (2 and 4 h) and chronic (24 h) treatments, cells were harvested to evaluate: i) Slc2a4, Cnr1 (CB1 receptor-encoded gene), and Srebf1 type a (SREBP-1a type-encoded gene) mRNAs (real-time PCR); ii) GLUT4 protein (western blotting); and iii) binding activity of nuclear factor (NF)-kappa B and sterol regulatory element-binding protein (SREBP)-1 specifically in the promoter of Slc2a4 gene (electrophoretic mobility shift assay). Results revealed that both acute and chronic CB1 receptor antagonism greatly increased (similar to 2.5-fold) Slc2a4 mRNA and protein content. Additionally, CB1-induced upregulation of Slc2a4 was accompanied by decreased binding activity of NF-kappa B at 2 and 24 h, and by increased binding activity of the SREBP-1 at 24 h. In conclusion, these findings reveal that the blockade of CB1 receptor markedly increases Slc2a4/GLUT4 expression in adipocytes, a feature that involves NF-kappa B and SREBP-1 transcriptional regulation. Journal of Molecular Endocrinology (2012) 49, 97-106

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Multilayer films of carboxymethylcellulose (CMC), a polyanion, and bromide salts of poly(4-vinylpyridine) quaternized with linear aliphatic chains of 2 (ethyl) and 5 (pentyl) carbon atoms, coded as QPVP-C2 and QPVP-C5, respectively, were fabricated by layer-by-layer (LbL) self-assembly onto Si/SiO2 wafers (hydrophilic substrate) or polystyrene, PS, films (hydrophobic substrate). The films were characterized by means of ex situ and in situ ellipsometry, atomic force microscopy (AFM), contact angle measurements and sum frequency generation vibrational spectroscopy (SFG). Antimicrobial tests were used to assess the exposure of pyridinium moieties to the aqueous medium. In situ ellipsometry indicated that for Si/SiO2 the chains were more expanded than the PS films and both substrates systems composed of QPVP-C5 were thicker than those with QPVP-C2. For dried layers, the alkyl side group size had a small effect on the thickness evolution, regardless of the substrate. At pH 2 the multilayers showed high resistance, evidencing that the build-up is driven not only by cooperative polymer-polymer ion pairing, but also by hydrophobic interactions between the alkyl side chains. The LbL films became irregular as the number of depositions increased. After the last deposition, the wettability of QPVP-C2 or QPVP-C5 terminated systems on the Si/SiO2 wafers and PS films were similar, except for QPVP-C2 on Si/SiO2 wafers. Unlike the morphology observed for LbL films on Si/SiO2 wafers, PS induced the formation of porous structures. SFG showed that in air the molecular orientation of pyridinium groups in multilayers with QPVP-C5 was stronger than in those containing QPVP-C2. The exposure of pyridinium moieties to the aqueous medium was more pronounced when the LbL were assembled on Si/SiO2 wafers.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Antitumor activities have been described in selol, a hydrophobic mixture of molecules containing selenium in their structure, and also in maghemite magnetic nanoparticles (MNPs). Both selol and MNPs were co-encapsulated within poly(lactic-co-glycolic acid) (PLGA) nanocapsules for therapeutic purposes. The PLGA-nanocapsules loaded with MNPs and selol were labeled MSE-NC and characterized by transmission and scanning electron microscopy, electrophoretic mobility, photon correlation spectroscopy, presenting a monodisperse profile, and positive charge. The antitumor effect of MSE-NC was evaluated using normal (MCF-10A) and neoplastic (4T1 and MCF-7) breast cell lines. Nanocapsules containing only MNPs or selol were used as control. MTT assay showed that the cytotoxicity induced by MSE-NC was dose and time dependent. Normal cells were less affected than tumor cells. Cell death occurred mainly by apoptosis. Further exposure of MSE-NC treated neoplastic breast cells to an alternating magnetic field increased the antitumor effect of MSE-NC. It was concluded that selol-loaded magnetic PLGA-nanocapsules (MSE-NC) represent an effective magnetic material platform to promote magnetohyperthermia and thus a potential system for antitumor therapy.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This paper describes the adsorption of sodium dodecyl sulfate (SDS) molecules in a low polar solvent on Ge substrate by using Fourier transform infrared-attenuated total reflection (FTIR-ATR) spectroscopy and atomic force microscopy (AFM). The maximum SDS amount adsorbed is (5.0 +/- 0.3) x 10(14) molecules cm(-2) in CHCl3, while with the use of CCl4 as subphase the ability of SDS adsorbed is 48% lower. AFM images show that depositions are highly disordered over the interface, and it was possible to establish that the size of the SDS deposition is around 30-40 nm over the Ge surface. A complete description of the infrared spectroscopic bands for the head and tail groups in the SDS molecule is also provided.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Drug dependence is a major health problem in adults and has been recognized as a significant problem in adolescents. We previously demonstrated that repeated treatment with a behaviorally sensitizing dose of ethanol in adult mice induced tolerance or no sensitization in adolescents and that repeated ethanol-treated adolescents expressed lower Fos and Egr-1 expression than adult mice in the prefrontal cortex (PFC). In the present work, we investigated the effects of acute and repeated ethanol administration on cyclic adenosine monophosphate (cAMP) response element-binding protein (CREB) DNA-binding activity using the electrophoretic mobility shift assay (EMSA) and the phosphorylated CREB (pCREB)/CREB ratio using immunoblotting in both the PFC and hippocampus in adolescent and adult mice. Adult mice exhibited typical locomotor sensitization after 15 days of daily treatment with 2.0 g/kg ethanol, whereas adolescent mice did not exhibit sensitization. Overall, adolescent mice displayed lower CREB binding activity in the PFC compared with adult mice, whereas opposite effects were observed in the hippocampus. The present results indicate that ethanol exposure induces significant and differential neuroadaptive changes in CREB DNA-binding activity in the PFC and hippocampus in adolescent mice compared with adult mice. These differential molecular changes may contribute to the blunted ethanol-induced behavioral sensitization observed in adolescent mice.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

AIMS: Solute carrier 2a2 (Slc2a2) gene codifies the glucose transporter GLUT2, a key protein for glucose flux in hepatocytes and renal epithelial cells of proximal tubule. In diabetes mellitus, hepatic and tubular glucose output has been related to Slc2a2/GLUT2 overexpression; and controlling the expression of this gene may be an important adjuvant way to improve glycemic homeostasis. Thus, the present study investigated transcriptional mechanisms involved in the diabetes-induced overexpression of the Slc2a2 gene. MAIN METHODS: Hepatocyte nuclear factors 1α and 4α (HNF-1α and HNF-4α), forkhead box A2 (FOXA2), sterol regulatory element binding protein-1c (SREBP-1c) and the CCAAT-enhancer-binding protein (C/EBPβ) mRNA expression (RT-PCR) and binding activity into the Slc2a2 promoter (electrophoretic mobility assay) were analyzed in the liver and kidney of diabetic and 6-day insulin-treated diabetic rats. KEY FINDINGS: Slc2a2/GLUT2 expression increased by more than 50% (P<0.001) in the liver and kidney of diabetic rats, and 6-day insulin treatment restores these values to those observed in non-diabetic animals. Similarly, the mRNA expression and the binding activity of HNF-1α, HNF-4α and FOXA2 increased by 50 to 100% (P<0.05 to P<0.001), also returning to values of non-diabetic rats after insulin treatment. Neither the Srebf1 and Cebpb mRNA expression, nor the SREBP-1c and C/EBP-β binding activity was altered in diabetic rats. SIGNIFICANCE: HNF-1α, HNF-4α and FOXA2 transcriptional factors are involved in diabetes-induced overexpression of Slc2a2 gene in the liver and kidney. These data point out that these transcriptional factors are important targets to control GLUT2 expression in these tissues, which can contribute to glycemic homeostasis in diabetes.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

One dimensional gel electrophoresis was used to separate proteins from the saliva of Rhipicephalus sanguineus female ticks fed on rabbits. Gel slices were subjected to tryptic digestion and analyzed by reversed-phase HPLC followed by MS/MS analysis. The data were compared to a database of salivary proteins of the same tick and to the predicted proteins of the host. Saliva was obtained by either pilocarpine or dopamine stimulation of partially fed ticks. Electrophoretic separations of both yielded products that were identified by mass spectrometry, although the pilocarpine-derived sample was of much better quality. The majority of identified proteins were of rabbit origin, indicating the recycling of the host proteins in the tick saliva, including hemoglobin, albumin, haptoglobin, transferring, and a plasma serpin. The few proteins found that were previously associated with parasitism and blood feeding include 2 glycine-rich, cement-like proteins, 2 lipocalins, and a thyropin protease inhibitor. Among other of the 19 tick proteins identified, albeit with undefined roles, were SPARC and cyclophilin A. This catalog provides a resource that can be mined for secreted molecules that play a role in tick–host interactions.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Memoria presentada para optar al Diploma de Estudios Avanzados en Ciencias del Mar

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Lipolysis and oxidation of lipids in foods are the major biochemical and chemical processes that cause food quality deterioration, leading to the characteristic, unpalatable odour and flavour called rancidity. In addition to unpalatability, rancidity may give rise to toxic levels of certain compounds like aldehydes, hydroperoxides, epoxides and cholesterol oxidation products. In this PhD study chromatographic and spectroscopic techniques were employed to determine the degree of rancidity in different animal products and its relationship with technological parameters like feeding fat sources, packaging, processing and storage conditions. To achieve this goal capillary gas chromatography (CGC) was employed not only to determine the fatty acids profile but also, after solid phase extraction, the amount of free fatty acids (FFA), diglycerides (DG), sterols (cholesterol and phytosterols) and cholesterol oxidation products (COPs). To determine hydroperoxides, primary products of oxidation and quantify secondary products UV/VIS absorbance spectroscopy was applied. Most of the foods analysed in this study were meat products. In actual fact, lipid oxidation is a major deterioration reaction in meat and meat products and results in adverse changes in the colour, flavour and texture of meat. The development of rancidity has long recognized as a serious problem during meat handling, storage and processing. On a dairy product, a vegetal cream, a study of lipid fraction and development of rancidity during storage was carried out to evaluate its shelf-life and some nutritional features life saturated/unsaturated fatty acids ratio and phytosterols content. Then, according to the interest that has been growing around functional food in the last years, a new electrophoretic method was optimized and compared with HPLC to check the quality of a beehive product like royal jelly. This manuscript reports the main results obtained in the five activities briefly summarized as follows: 1) comparison between HPLC and a new electrophoretic method in the evaluation of authenticity of royal jelly; 2) study of the lipid fraction of a vegetal cream under different storage conditions; 3) study of lipid oxidation in minced beef during storage under a modified atmosphere packaging, before and after cooking; 4) evaluation of the influence of dietary fat and processing on the lipid fraction of chicken patties; 5) study of the lipid fraction of typical Italian and Spanish pork dry sausages and cured hams.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Introduction Phospholipase Cb1 (PLC-β1) is a key player in the regulation of nuclear inositol lipid signaling and of a wide range of cellular functions, such as proliferation and differentiation (1,2,3). PLCb1 signaling depends on the cleavage of phosphatidylinositol 4,5-bisphosphate and the formation of the second messengers diacylglycerol and Inositol tris-phosphate which activate canonical protein kinase C (cPKC) isoforms. Here we describe a proteomic approach to find out a potential effector of nuclear PLC-b1 dependent signaling during insulin stimulated myogenic differentiation. Methods Nuclear lysates obtained from insulin induced C2C12 myoblasts were immunoprecipitated with anti-phospho-substrate cPKC antibody. Proteins, stained with Comassie blue, were excised, digested and subsequently analysed in LC-MS/MS. For peptide sequence searching, the mass spectra were processed and analyzed using the Mascot MS/MS ion search program with the NCBI database. Western blotting, GST-pull down and co-immunoprecipitation were performed to study the interaction between eEF1A2 and cPKCs. Site direct mutagenesis was performed to confirm the phosphorylated motif recognized by the antibody. Immunofluorescence analysis, GFP-tagged eEF1A2 vector and subcellular fractionation were performed to study nuclear localization and relative distribution of eEF1A2. Results We have previously shown that PLC-β1 is greatly increased at the nuclear level during insulin-induced myoblasts differentiation and that this nuclear localization is essential for induction of differentiation. Thus, nuclear proteins of insulin stimulated C2C12 myoblasts, were immunoprecipitated with an anti-phospho-substrate cPKC antibody. After Electrophoretic gel separation of proteins immunoprecipitated, several molecules were identified by LC-MS/MS. Among these most relevant and unexpected was eukaryotic elongation factor 1 alpha 2 (eEF1A2). We found that eEF1A2 is phosphorylated by PKCb1 and that these two molecules coimmunolocalized at the nucleolar level. eEF1A2 could be phosphorylated in many sites among which both threonine and serine residues. By site direct mutagenesis we demonstrated that it is the serine residue of the motif recognized by the antibody that is specifically phosphorylated by PKCb1. The silencing of PLCb1 gives rise to a reduction of expression and phosphorylation levels of eEF1A2 indicating this molecule as a target of nuclear PLCb1 regulatory network during myoblasts differentiation.