614 resultados para ESPECTROS
Resumo:
The main objective of the present work is to contribute to the development of the coordination chemistry of macromolecules such as resorcinarene with the synthesis and characterization of new copper complexes with chloride, vanillin and resorcinarene binders, all coordinated to phenanthroline, a biologically active molecule with important properties in biological systems. The complex [(Cu(phen))4(resvan)], was synthesized from the direct reaction of the metals with resorcinarene and generates several possibilities for coordination, which hinders its characterization. Therefore, in order to limit the coordination sites of the ligand, the complex [(Cu(phen))4(resvan)]Cl4 was formed from a new synthetic methodology. The complex cis-[Cu(phen)Cl2], cis-[Cu(phen)(van)]Cl, [(Cu(phen))4(resvan)] and [(Cu(phen))4(resvan)]Cl4 were characterized by spectroscopic techniques such as IR, UV-vis and EPR. By using infrared it has been possible to demonstrate the presence of the phenanthroline ligand in the synthesized complexes, and vanillin in the complex cis- [Cu(phen)(van)]Cl and resvan ligand in the complex [(Cu(phen))4(resvan)], besides this indicating the formation of resorcinarene in the complex [(Cu(phen))4(resvan)]Cl4. The electronic spectra of these coordination compounds indicated the presence of the phenanthroline ligand, by its intense bands in the ultraviolet region. For the complex cis- [Cu(phen)(van)]Cl it still indicated the presence of the ligand vanillin based on intraligand bands of vanillin and charge transfer, LMCT. Furthermore, the spectra showed d-d bands, confirming the formation of metal compounds. The amount of copper atoms present in the complex [(Cu(phen))4(resvan)]Cl4 was estimated from a comparative analysis of the absorbances of solutions of the same concentration of [(Cu(phen))4(resvan)]Cl4 and cis- [Cu(phen)(van)]Cl, which indicates that these compounds have copper atoms in the ratio 4:1. The EPR spectra of the complex cis-[Cu(phen)Cl2], cis-[Cu(phen)(van)]Cl and [(Cu(phen))4(resvan)]Cl4 showed axial profiles, while the complex [(Cu(phen))4(resvan)] showed of axial and rhombic profiles, indicating a change in the symmetry of the Cu (II) to this complex environment. The binders vanillin and resvan underwent biological assays with satisfactory results, both exhibited antioxidant activity and low toxicity, as well vanillin present antitoxoplásmico character.
Resumo:
The sustainable use of waste resulting from the agribusiness is currently the focus of research, especially the sugar cane bagasse (BCA), being the lignocellulosic waste produced in greater volume in the Brazilian agribusiness, where the residual biomass has been applied in production energy and bioproducts. In this paper, pulp was produced in high purity from the (BCA) by pulping soda / anthraquinone and subsequent conversion to cellulose acetate. Commercial cellulose Avicel was used for comparison. The obtained cellulose acetate was homogeneous acetylation reaction by modifying the variables, the reaction time in hours (8, 12, 16, 20 and 24) and temperature in ° C (25 and 50). FTIR spectra showed characteristic bands identical to cellulosic materials, demonstrating the efficiency of separation by pulping. The characterization of cellulose acetate was obtained and by infrared spectroscopy (FTIR), X-ray diffraction (XRD), thermogravimetric analysis (TG / DTG / DSC), scanning electron microscopy (SEM) and determining the degree of substitution (DS ) for the cellulose acetate to confirm the acetylation. The optimal reaction time for obtaining diacetates and triacetates, at both temperatures were 20 and 24 h. Cellulose acetate produced BCA presented GS between 2.57 and 2.7 at 25 ° C and 50 ° C GS obtained were 2.66 and 2.84, indicating the actual conversion of cellulose BCA of di- and triacetates. Comparative mode, commercial cellulose Avicel GS showed 2.78 and 2.76 at 25 ° C and 2.77 to 2.75 at 50 ° C. Data were collected in time of 20 h and 24 h, respectively. The best result was for the synthesis of cellulose acetate obtained from the BCA GS 2.84 to 50 ° C and 24 hours, being classified as cellulose triacetate, which showed superior result to that produced with the commercial ethyl cellulose Avicel, demonstrating converting potential of cellulose derived from a lignocellulosic residue (BCA), low cost, prospects of commercial use of cellulose acetate
Resumo:
The goal set for this work was to synthesize and to characterize new iron and copper complexes with the Schiff base 3-MeOsalen and ligands of biological relevance, whose formulas are [Fe(3-MeOsalen)NO2], [Fe(3-MeOsalen)(etil2-dtc)], [Fe(3-MeOsalen)NO] and Na[Cu(3-MeOsalen)NO2]. The compounds were characterized by vibrational spectroscopy in the infrared region (IV) and Electronic spectroscopy in the ultraviolet and visible region (Uv-Vis). From the analysis of infrared spectra, they proved to formation of precursor complexes, as evidenced by changes in the vibrationals frequencies ν(C=N) e ν(C-O) and the emergence of vibrationals modes metal-oxygen and metal-nitrogen. For nitro complexes of iron and copper were observed ν(NO2)ass around 1300 cm-1 e ν(NO2)sim in 1271 cm-1 , indicating that the coordination is done via the nitrogen atom. The complex spectrum [Fe(3-MeOsalen)(etil2-dtc)] exhibited two bands, the ν(C-NR2) in 1508 cm-1 e ν(C-S) in 997 cm-1 , the relevant vibrational modes of coordinating ligand in the bidentate form. For the complex [Fe(3-MeOsalen)NO] was observed a new intense band in 1670 cm-1 related to the ν(NO). With the electronic spectra, the formation of complexes was evidenced by shifts of bands intraligands transitions and the emergence of new bands such as LMCT (p Cl- d* Fe3+) in [Fe(3-MeOsalen)Cl] and the d-d in [Cu(3-MeOsalen)H2O]. As for the [Fe(3-MeOsalen)NO2] has highlighted the absence of LMCT band present in the precursor complex as for the [Cu(3-MeOsalen)NO2] found that the displacement of the band hipsocrômico d-d on 28 nm. The electronic spectrum of [Fe(3-MeOsalen)(etil2-dtc)] presented LMCT band shifts and changes in intraligantes transitions. With regard to [Fe(3-MeOsalen)NO], revealed a more energetic transitions intraligands regions from the strong character π receiver NO and MLCT band of transition dπFe(II)π*(NO).
Resumo:
Chondroitin sulfate (CS) is a naturally glycosaminoglycan found in the extracellular matrix of connective tissues and it may be extracted and purified those tissues. CS is involved in various biological functions, which may be related to the having structural variability, despite the simplicity of the linear chain structure from this molecule. Researches in biotechnology and pharmaceutical field with wastes from aquaculture has been developed in Brazil. In recent decades, tilapia (Oreochromis niloticus), native fish from Africa, has been one of the most cultivated species in various regions of the world, including Brazil. The tilapia farming is a cost-effective activity, however, it generates large amount of wastes that are discarded by producers. It is understood that waste from tilapia can be used in research as a source of molecules with important biotechnological applications, which also helps in reducing environmental impacts and promote the development of an ecofriendly activity. Thus, nile tilapia viscera were subjected to proteolysis, then the glycosaminoglycans were complexed with ion exchange resin (Lewatit), it was fractionated with increasing volumes of acetone and purified by ion exchange chromatography DEAE-Sephacel. Further, the fraction was analyzed by agarose gel electrophoresis and nuclear magnetic resonance (NMR). The electrophoretic profile of the compound together the analysis of 1H NMR spectra and the HSQC correlation allow to affirm that the compound corresponds to a molecule like chondroitin sulfate. MTT assay was used to assess cell viability in the presence of CS tilapia isolated and showed that the compound is not cytotoxic to normal cells such as cells from the mouse embryo fibroblast (3T3). Then, this compound was tested for the ability to reduce the influx of leukocytes in model of acute peritonitis (in vivo) induced by sodium thioglycolate. In this context, it was done total and differential leukocytes counting in the blood and peritoneal fluid collected respectively from vena cava and the peritoneal cavity of the animals subjected to the experiment. The chondroitin sulfate for the first time isolated from tilapia (CST ) was able to reduce the migration of leukocytes to the peritoneal cavity of inflamed mice until 80.4 per cent at a dose 10µg/kg. The results also show that there was a significant reduction (p<0.001) of the population of polymorphonuclear leukocytes from peritoneal cavity in the three tested doses (0.1µg/kg; 1µg/kg and 10µg/kg) when it was compared to the positive control (just thioglycolate). Therefore, since the CST structure and mechanism of action has been completely elucidated, this compound may have potential for therapeutic use in inflammatory diseases
Resumo:
The cutting fluids are lubricants used in machining processes, because they present many benefits for different processes. They have many functions, such as lubrication, cooling, improvement in surface finishing, besides they decreases the tool wear and protect it against corrosion. Therefore due to new environment laws and demand to green products, new cutting fluids must be development. These shall be biodegradable, non-toxic, safety for environment and operator healthy. Thus, vegetable oils are a good option to solve this problem, replacing the mineral oils. In this context, this work aimed to develop an emulsion cutting fluid from epoxidized vegetable oil, promoting better lubrication and cooling in machining processes, besides being environment friendly. The methodology was divided in five steps: first one was the biolubricant synthesis by epoxidation reaction. Following this, the biolubricant was characterized in terms of density, acidity, iodo index, oxirane index, viscosity, thermal stability and chemical composition. The third step was to develop an emulsion O/A with different oil concentration (10, 20 and 25%) and surfactant concentration (1, 2.5 and 5%). Also, emulsion stability was studied. The emulsion tribological performance were carried out in HFRR (High Frequency Reciprocating Rig), it consists in ball-disc contact. Results showed that the vegetable based lubricant may be synthesized by epoxidationreaction, the spectra showed that there was 100% conversion of the epoxy rings unsaturations. In regard the tribological assessment is observed that the percentage of oil present in the emulsion directly influenced the film formation and coefficient of friction for higher concentrations the film formation process is slow and unstable, and the coefficient of friction. The high concentrations of surfactants have not improved the emulsions tribological performance. The best performance in friction reduction was observed to emulsion with 10% of oil and 5% of surfactant, its average wear scar was 202 μm.
Resumo:
In Brazil, there is a high incidence of venomous animals. Among them, scorpions are highlighted by their medical importance, and for being their venom a source of several molecules with biological and pharmacological activity not yet fully understood, including several bioactive peptides. Antimicrobial peptides (AMPs) are components of the immune system in prokaryotes and eukaryotes, used in the first line of defense against microorganisms. In the present study, we characterized the first PAM previously identified through transcriptome of the venom gland of the scorpion Tityus stigmurus, named Stigmurin. The characteristics of Stigmurin were investigated by computational modeling and construction of dendrogram. In vitro tests investigated the antibacterial, antifungal, haemolytic and cytotoxic effects of crude venom and Stigmurin. In addition, the structural characteristics of Stigmurin were investigated by circular dochroism in water, 2, 2 , 2- trifluoethanol (TFE) and sodium dodecyl sulfate (SDS) and the models were refined by molecular dynamics simulations. The results showed that the selected sequence encodes a mature protein of 17 amino acid residues and the dendrogram reveals a case of convergent evolution. The crude venom showed no antimicrobial activity, however, Stigmurin exhibited a broad spectrum of antibacterial activity, with minimal inhibitory concentrations (MIC) ranging from 31.25 and 250 µg/mL for different strains, while the hemolytic activity at these concentrations was low. In cytotoxicity studies, the crude venom was unable to reduce cell viability in VERO E6 cells; in contrast, its activity in SiHa cells was significantly higher, corresponding to IC50 of 3.6 µg/mL. For Stigmurin the concentration sable to decrease cell viability of Vero E6 and SiHa cells in 50% were 275.67 µg/mL and 212.54 µg/mL, respectively. The dichroism spectra revealed the conformational flexibility, with predominating extended and β–sheet structures, as well as a remark able renaturation ability. The results suggest that Stigmurin could be considered as a potential antiinfective drug
Resumo:
Analogous to sunspots and solar photospheric faculae, which visibility is modulated by stellar rotation, stellar active regions consist of cool spots and bright faculae caused by the magnetic field of the star. Such starspots are now well established as major tracers used to estimate the stellar rotation period, but their dynamic behavior may also be used to analyze other relevant phenomena such as the presence of magnetic activity and its cycles. To calculate the stellar rotation period, identify the presence of active regions and investigate if the star exhibits or not differential rotation, we apply two methods: a wavelet analysis and a spot model. The wavelet procedure is also applied here to study pulsation in order to identify specific signatures of this particular stellar variability for different types of pulsating variable stars. The wavelet transform has been used as a powerful tool for treating several problems in astrophysics. In this work, we show that the time-frequency analysis of stellar light curves using the wavelet transform is a practical tool for identifying rotation, magnetic activity, and pulsation signatures. We present the wavelet spectral composition and multiscale variations of the time series for four classes of stars: targets dominated by magnetic activity, stars with transiting planets, those with binary transits, and pulsating stars. We applied the Morlet wavelet (6th order), which offers high time and frequency resolution. By applying the wavelet transform to the signal, we obtain the wavelet local and global power spectra. The first is interpreted as energy distribution of the signal in time-frequency space, and the second is obtained by time integration of the local map. Since the wavelet transform is a useful mathematical tool for nonstationary signals, this technique applied to Kepler and CoRoT light curves allows us to clearly identify particular signatures for different phenomena. In particular, patterns were identified for the temporal evolution of the rotation period and other periodicity due to active regions affecting these light curves. In addition, a beat-pattern vii signature in the local wavelet map of pulsating stars over the entire time span was also detected. The second method is based on starspots detection during transits of an extrasolar planet orbiting its host star. As a planet eclipses its parent star, we can detect physical phenomena on the surface of the star. If a dark spot on the disk of the star is partially or totally eclipsed, the integrated stellar luminosity will increase slightly. By analyzing the transit light curve it is possible to infer the physical properties of starspots, such as size, intensity, position and temperature. By detecting the same spot on consecutive transits, it is possible to obtain additional information such as the stellar rotation period in the planetary transit latitude, differential rotation, and magnetic activity cycles. Transit observations of CoRoT-18 and Kepler-17 were used to implement this model.
Resumo:
This work was developed with the objective of proposing a simple, fast and versatile methodological routine using near-infrared spectroscopy (NIR) combined with multivariate analysis for the determination of ash content, moisture, protein and total lipids present in the gray shrimp (Litopenaeus vannamei ) which is conventionally performed gravimetrically after ashing at 550 ° C gravimetrically after drying at 105 ° C for the determination of moisture gravimetrically after a Soxhlet extraction using volumetric and after digestion and distillation Kjedhal respectively. Was first collected the spectra of 63 samples processed boiled shrimp Litopenaeus vannamei species. Then, the determinations by conventional standard methods were carried out. The spectra centered average underwent multiplicative scattering correction of light, smoothing Saviztky-Golay 15 points and first derivative, eliminated the noisy region, the working range was from 1100,36 to 2502,37 nm. Thus, the PLS models for predicting ash showed R 0,9471; 0,1017 and RMSEP RMSEC 0,1548; Moisture R was 0,9241; 2,5483 and RMSEP RMSEC 4,1979; R protein to 0,9201; 1,9391 and RMSEP RMSEC 2,7066; for lipids R 0,8801; 0,2827 and RMSEP RMSEC 0,2329 So that the results showed that the relative errors found between the reference method and the NIR were small and satisfactory. These results are an excellent indication that you can use the NIR to these analyzes, which is quite advantageous, since conventional techniques are time consuming, they spend a lot of reagents and involve a number of professionals, which requires a reasonable runtime while after the validation of the methodology execution using NIR reduces all this time to a few minutes, saving reagents, time and without waste generation, and that this is a non-destructive technique.
Resumo:
Metal Organic Frameworks (MOFs) are hybrids materials, often crystalline, consisting of metal or metal clusters, connected by polytopic organic ligands repetitively, leading to structures, usually porous. In this work, MOFs based on lanthanide ions (La3+ and Gd3+) and dicarboxylate type of ligands (isophthalic and terephthalic acids), were synthesized by hydrothermal, solvothermal and hydro(solvo)thermal methods. The effects of the synthetic route as well as the type of heating, conventional or by microwave, on the structure and properties of MOFs were studied. The powder samples obtained were characterized by X-ray diffraction, infrared spectroscopy, thermal analysis and scanning electron microscopy. The results suggest that the addition of an organic or inorganic base is needed to promote the deprotonation of the ligand, since in the samples prepared by the hydrothermal method, without the use of a base, no formation of the metalorganic framework was observed. On the other hand, the presence of DMF as solvent or cosolvent, afforded the deprotonation of the ligand with the consequent formation of MOFs. At least two different crystalline structures were identified for the samples prepared with terephthalic acid. These samples are isostructural with those reported for phases Eu(1,3-BDC)DMF, Eu2(1,4-BDC)3 (DMF)2 and Tb(1,4-BDC)H2O. The presence of water in the reaction medium in the hydro(solvo)thermal method, provoked the growth of the structure different from that observed in the absence of water. This can be explained by the difference in the coordination mode of water and DMF to lanthanide ions. Although not identified by XRD, the samples prepared with isophthalic acid, also present metalorganic structures, which was confirmed by the presence of the characteristic displacement of the carbonyl group band in their infrared spectra, compared to the spectrum of the pure ligand. This shift was also observed in the samples prepared with terephthalic acid. Thermal analisys shows that the metal organic frameworks do not collapse occurs at a temperature below 430°C.The analysis of scanning electron microscopy suggests that the morphology of powders is highly dependent on the type of heating used, conventional or by microwave.
Resumo:
Discovered in 1963, 3C 273 was the second quasar identified and cataloged in the Third Cambridge Catalog for radio sources, and the first one for which emission lines were identified with a hydrogen sequence redshifted. It is the brightest quasar of the celestial sphere, the most studied, analyzed, and with a resulting abundance of data available in a vast literature. The accurate analysis of the deviations of the spectral lines of quasars provides enough information to put in evidence the variation of fundamental constants of nature and similarly the universe expansion rate. The analysis of the variability of the light curves of these bodies, and the consequent accuracy of their periodicity, is of utmost importance as it provides an efficiency of their observations, enables a greater understanding of the physical phenomena, and makes it possible to conduct spectral observations on more accurate dates (when their light curves show pronounced peaks and therefore richer spectra information). In this master’s thesis twenty eight light curves from the quasar 3C 273 are studied, covering all the electromagnetic spectrum wavebands (radio emission to gamma rays), totaling in the analysis of four light curves for each waveband. We have applied the method of Continuous Wavelet Transform using the sixth-order (!0 = 6) Morlet wavelet function, and obtained excellent results in accordance with the literature.
Resumo:
Discovered in 1963, 3C 273 was the second quasar identified and cataloged in the Third Cambridge Catalog for radio sources, and the first one for which emission lines were identified with a hydrogen sequence redshifted. It is the brightest quasar of the celestial sphere, the most studied, analyzed, and with a resulting abundance of data available in a vast literature. The accurate analysis of the deviations of the spectral lines of quasars provides enough information to put in evidence the variation of fundamental constants of nature and similarly the universe expansion rate. The analysis of the variability of the light curves of these bodies, and the consequent accuracy of their periodicity, is of utmost importance as it provides an efficiency of their observations, enables a greater understanding of the physical phenomena, and makes it possible to conduct spectral observations on more accurate dates (when their light curves show pronounced peaks and therefore richer spectra information). In this master’s thesis twenty eight light curves from the quasar 3C 273 are studied, covering all the electromagnetic spectrum wavebands (radio emission to gamma rays), totaling in the analysis of four light curves for each waveband. We have applied the method of Continuous Wavelet Transform using the sixth-order (!0 = 6) Morlet wavelet function, and obtained excellent results in accordance with the literature.
Resumo:
Binary systems are key environments to study the fundamental properties of stars. In this work, we analyze 99 binary systems identified by the CoRoT space mission. From the study of the phase diagrams of these systems, our sample is divided into three groups: those whose systems are characterized by the variability relative to the binary eclipses; those presenting strong modulations probably due to the presence of stellar spots on the surface of star; and those whose systems have variability associated with the expansion and contraction of the surface layers. For eclipsing binary stars, phase diagrams are used to estimate the classification in regard to their morphology, based on the study of equipotential surfaces. In this context, to determine the rotation period, and to identify the presence of active regions, and to investigate if the star exhibits or not differential rotation and study stellar pulsation, we apply the wavelet procedure. The wavelet transform has been used as a powerful tool in the treatment of a large number of problems in astrophysics. Through the wavelet transform, one can perform an analysis in time-frequency light curves rich in details that contribute significantly to the study of phenomena associated with the rotation, the magnetic activity and stellar pulsations. In this work, we apply Morlet wavelet (6th order), which offers high time and frequency resolution and obtain local (energy distribution of the signal) and global (time integration of local map) wavelet power spectra. Using the wavelet analysis, we identify thirteen systems with periodicities related to the rotational modulation, besides the beating pattern signature in the local wavelet map of five pulsating stars over the entire time span.
Resumo:
Binary systems are key environments to study the fundamental properties of stars. In this work, we analyze 99 binary systems identified by the CoRoT space mission. From the study of the phase diagrams of these systems, our sample is divided into three groups: those whose systems are characterized by the variability relative to the binary eclipses; those presenting strong modulations probably due to the presence of stellar spots on the surface of star; and those whose systems have variability associated with the expansion and contraction of the surface layers. For eclipsing binary stars, phase diagrams are used to estimate the classification in regard to their morphology, based on the study of equipotential surfaces. In this context, to determine the rotation period, and to identify the presence of active regions, and to investigate if the star exhibits or not differential rotation and study stellar pulsation, we apply the wavelet procedure. The wavelet transform has been used as a powerful tool in the treatment of a large number of problems in astrophysics. Through the wavelet transform, one can perform an analysis in time-frequency light curves rich in details that contribute significantly to the study of phenomena associated with the rotation, the magnetic activity and stellar pulsations. In this work, we apply Morlet wavelet (6th order), which offers high time and frequency resolution and obtain local (energy distribution of the signal) and global (time integration of local map) wavelet power spectra. Using the wavelet analysis, we identify thirteen systems with periodicities related to the rotational modulation, besides the beating pattern signature in the local wavelet map of five pulsating stars over the entire time span.
Resumo:
Were synthesized in this work in the following aqueous solution coordination compounds: [Ni(LDP)(H2O)2Cl2].2H2O, [Co(LDP)Cl2].3H2O, [Ni(CDP)Cl2].4H2O, [Co(CDP)Cl2].4H2O, [Ni(BDZ)2Cl2].4H2O and [Co(BDZ)2Cl2(H2O)2]. These complexes were synthesized by stoichiometric addition of the binder in the respective metal chloride solutions. Precipitation occurred after drying the solvent at room temperature. The characterization and proposed structures were made using conventional analysis methods such as elemental analysis (CHN), absorption spectroscopy in the infrared Fourier transform spectroscopy (FTIR), X-ray diffraction by the powder method and Technical thermoanalytical TG / DTG (thermogravimetry / derivative thermogravimetry) and DSC (differential scanning calorimetry). These techniques provided information on dehydration, coordination modes, thermal performance, composition and structure of the synthesized compounds. The results of the TG curve, it was possible to establish the general formula of each compound synthesized. The analysis of X-ray diffraction was observed that four of the synthesized complex crystal structure which does not exhibit the complex was obtained from Ldopa and carbidopa and the complex obtained from benzimidazole was obtained crystal structures. The observations of the spectra in the infrared region suggested a monodentate ligand coordination to metal centers through its amine group for all complexes. The TG-DTG and DSC curves provide important information and on the behavior and thermal decomposition of the synthesized compounds. The molar conductivity data indicated that the solutions of the complexes formed behave as a nonelectrolyte, which implies that chlorine is coordinated to the central atom in the complex.
Resumo:
Were synthesized in this work in the following aqueous solution coordination compounds: [Ni(LDP)(H2O)2Cl2].2H2O, [Co(LDP)Cl2].3H2O, [Ni(CDP)Cl2].4H2O, [Co(CDP)Cl2].4H2O, [Ni(BDZ)2Cl2].4H2O and [Co(BDZ)2Cl2(H2O)2]. These complexes were synthesized by stoichiometric addition of the binder in the respective metal chloride solutions. Precipitation occurred after drying the solvent at room temperature. The characterization and proposed structures were made using conventional analysis methods such as elemental analysis (CHN), absorption spectroscopy in the infrared Fourier transform spectroscopy (FTIR), X-ray diffraction by the powder method and Technical thermoanalytical TG / DTG (thermogravimetry / derivative thermogravimetry) and DSC (differential scanning calorimetry). These techniques provided information on dehydration, coordination modes, thermal performance, composition and structure of the synthesized compounds. The results of the TG curve, it was possible to establish the general formula of each compound synthesized. The analysis of X-ray diffraction was observed that four of the synthesized complex crystal structure which does not exhibit the complex was obtained from Ldopa and carbidopa and the complex obtained from benzimidazole was obtained crystal structures. The observations of the spectra in the infrared region suggested a monodentate ligand coordination to metal centers through its amine group for all complexes. The TG-DTG and DSC curves provide important information and on the behavior and thermal decomposition of the synthesized compounds. The molar conductivity data indicated that the solutions of the complexes formed behave as a nonelectrolyte, which implies that chlorine is coordinated to the central atom in the complex.