861 resultados para Diagnostic imaging Digital techniques
Resumo:
As the Latino population in the United States grows, it will become increasingly important for undergraduate students in environmental design and related disciplines to become more culturally responsive and learn how to understand and address challenges faced by population groups, such as Latino youth. To this end, we involved environmental design undergraduate students at the University of Colorado in a service-learning class to mentor Latino youth in the creation of multimedia narratives using photovoice and digital storytelling techniques. The introduction of technology was used as a bridge between the two groups and to provide a platform for the Latino youth to reveal their community experiences. Based on focus group results, we describe the impact on the undergraduate students and provide recommendations for similar programs that can promote cultural responsiveness through the use of digital technology and prepare environmental design students to work successfully in increasingly diverse communities.
Resumo:
The coupling of kurtosis based-indexes and envelope analysis represents one of the most successful and widespread procedures for the diagnostics of incipient faults on rolling element bearings. Kurtosis-based indexes are often used to select the proper demodulation band for the application of envelope-based techniques. Kurtosis itself, in slightly different formulations, is applied for the prognostic and condition monitoring of rolling element bearings, as a standalone tool for a fast indication of the development of faults. This paper shows for the first time the strong analytical connection which holds for these two families of indexes. In particular, analytical identities are shown for the squared envelope spectrum (SES) and the kurtosis of the corresponding band-pass filtered analytic signal. In particular, it is demonstrated how the sum of the peaks in the SES corresponds to the raw 4th order moment. The analytical results show as well a link with an another signal processing technique: the cepstrum pre-whitening, recently used in bearing diagnostics. The analytical results are the basis for the discussion on an optimal indicator for the choice of the demodulation band, the ratio of cyclic content (RCC), which endows the kurtosis with selectivity in the cyclic frequency domain and whose performance is compared with more traditional kurtosis-based indicators such as the protrugram. A benchmark, performed on numerical simulations and experimental data coming from two different test-rigs, proves the superior effectiveness of such an indicator. Finally a short introduction to the potential offered by the newly proposed index in the field of prognostics is given in an additional experimental example. In particular the RCC is tested on experimental data collected on an endurance bearing test-rig, showing its ability to follow the development of the damage with a single numerical index.
Resumo:
The diagnostics of mechanical components operating in transient conditions is still an open issue, in both research and industrial field. Indeed, the signal processing techniques developed to analyse stationary data are not applicable or are affected by a loss of effectiveness when applied to signal acquired in transient conditions. In this paper, a suitable and original signal processing tool (named EEMED), which can be used for mechanical component diagnostics in whatever operating condition and noise level, is developed exploiting some data-adaptive techniques such as Empirical Mode Decomposition (EMD), Minimum Entropy Deconvolution (MED) and the analytical approach of the Hilbert transform. The proposed tool is able to supply diagnostic information on the basis of experimental vibrations measured in transient conditions. The tool has been originally developed in order to detect localized faults on bearings installed in high speed train traction equipments and it is more effective to detect a fault in non-stationary conditions than signal processing tools based on spectral kurtosis or envelope analysis, which represent until now the landmark for bearings diagnostics.
Resumo:
In the field of rolling element bearing diagnostics envelope analysis, and in particular the squared envelope spectrum, have gained in the last years a leading role among the different digital signal processing techniques. The original constraint of constant operating speed has been relaxed thanks to the combination of this technique with the computed order tracking, able to resample signals at constant angular increments. In this way, the field of application of squared envelope spectrum has been extended to cases in which small speed fluctuations occur, maintaining the effectiveness and efficiency that characterize this successful technique. However, the constraint on speed has to be removed completely, making envelope analysis suitable also for speed and load transients, to implement an algorithm valid for all the industrial application. In fact, in many applications, the coincidence of high bearing loads, and therefore high diagnostic capability, with acceleration-deceleration phases represents a further incentive in this direction. This paper is aimed at providing and testing a procedure for the application of envelope analysis to speed transients. The effect of load variation on the proposed technique will be also qualitatively addressed.
Resumo:
Diagnostics of rolling element bearings have been traditionally developed for constant operating conditions, and sophisticated techniques, like Spectral Kurtosis or Envelope Analysis, have proven their effectiveness by means of experimental tests, mainly conducted in small-scale laboratory test-rigs. Algorithms have been developed for the digital signal processing of data collected at constant speed and bearing load, with a few exceptions, allowing only small fluctuations of these quantities. Owing to the spreading of condition based maintenance in many industrial fields, in the last years a need for more flexible algorithms emerged, asking for compatibility with highly variable operating conditions, such as acceleration/deceleration transients. This paper analyzes the problems related with significant speed and load variability, discussing in detail the effect that they have on bearing damage symptoms, and propose solutions to adapt existing algorithms to cope with this new challenge. In particular, the paper will i) discuss the implication of variable speed on the applicability of diagnostic techniques, ii) address quantitatively the effects of load on the characteristic frequencies of damaged bearings and iii) finally present a new approach for bearing diagnostics in variable conditions, based on envelope analysis. The research is based on experimental data obtained by using artificially damaged bearings installed on a full scale test-rig, equipped with actual train traction system and reproducing the operation on a real track, including all the environmental noise, owing to track irregularity and electrical disturbances of such a harsh application.
Resumo:
The signal processing techniques developed for the diagnostics of mechanical components operating in stationary conditions are often not applicable or are affected by a loss of effectiveness when applied to signals measured in transient conditions. In this chapter, an original signal processing tool is developed exploiting some data-adaptive techniques such as Empirical Mode Decomposition, Minimum Entropy Deconvolution and the analytical approach of the Hilbert transform. The tool has been developed to detect localized faults on bearings of traction systems of high speed trains and it is more effective to detect a fault in non-stationary conditions than signal processing tools based on envelope analysis or spectral kurtosis, which represent until now the landmark for bearings diagnostics.
Resumo:
Aims The Medical Imaging Training Immersive Environment (MITIE) system is a recently developed virtual reality (VR) platform that allows students to practice a range of medical imaging techniques. The aim of this pilot study was to harvest user feedback about the educational value of the application and inform future pedagogical development. This presentation explores the use of this technology for skills training and blurring the boundaries between academic learning and clinical skills training. Background MITIE is a 3D VR environment that allows students to manipulate a patient and radiographic equipment in order to produce a VR-generated image for comparison with a gold standard. As with VR initiatives in other health disciplines (1-6) the software mimics clinical practice as much as possible and uses 3D technology to enhance immersion and realism. The software was developed by the Medical Imaging Course Team at a provider University with funding from a Health Workforce Australia “Simulated Learning Environments” grant. Methods Over 80 students undertaking the Bachelor of Medical Imaging Course were randomised to receive practical experience with either MITIE or radiographic equipment in the medical radiation laboratory. Student feedback about the educational value of the software was collected and performance with an assessed setup was measured for both groups for comparison. Ethical approval for the project was provided by the university ethics panel. Results This presentation provides qualitative analysis of student perceptions relating to satisfaction, usability and educational value as well as comparative quantitative performance data. Students reported high levels of satisfaction and both feedback and assessment results confirmed the application’s significance as a pre-clinical training tool. There was a clear emerging theme that MITIE could be a useful learning tool that students could access to consolidate their clinical learning, either during their academic timetables or their clinical placement. Conclusion Student feedback and performance data indicate that MITIE has a valuable role to play in the clinical skills training for medical imaging students both in the academic and the clinical environment. Future work will establish a framework for an appropriate supporting pedagogy that can cross the boundary between the two environments. This project was possible due to funding made available by Health Workforce Australia.
Resumo:
Background and aims: The assessment of intra-epidermal nerve fiber density (IENFD) in skin biopsies and corneal nerve fiber density (CNFD) using corneal confocal microscopy (CCM) provides promising techniques to detect small nerve fiber damage in patients with peripheral neuropathy. To help define the clinical utility of each of these techniques in patients with diabetic neuropathy we have assessed sensitivity and specificity of IENFD and CNFD in predicting the following: 1) diabetic polyneuropathy (DPN); 2) risk of foot ulceration (RFU); 3) initial small fiber neuropathy (iSFN); 4) severe small fiber neuropathy (sSFN)...
Resumo:
Digital tablets have been identified as a tool for enabling blended learning and supporting online teaching and learning. A small scale trial was undertaken to assess the effectiveness of this technology when applied to power engineering education. Critical findings and experiences gained from this trial, including potential benefits, presentation techniques and the resulting student feedback are presented in this paper.
Resumo:
Mass spectrometry is now an indispensable tool for lipid analysis and is arguably the driving force in the renaissance of lipid research. In its various forms, mass spectrometry is uniquely capable of resolving the extensive compositional and structural diversity of lipids in biological systems. Furthermore, it provides the ability to accurately quantify molecular-level changes in lipid populations associated with changes in metabolism and environment; bringing lipid science to the "omics" age. The recent explosion of mass spectrometry-based surface analysis techniques is fuelling further expansion of the lipidomics field. This is evidenced by the numerous papers published on the subject of mass spectrometric imaging of lipids in recent years. While imaging mass spectrometry provides new and exciting possibilities, it is but one of the many opportunities direct surface analysis offers the lipid researcher. In this review we describe the current state-of-the-art in the direct surface analysis of lipids with a focus on tissue sections, intact cells and thin-layer chromatography substrates. The suitability of these different approaches towards analysis of the major lipid classes along with their current and potential applications in the field of lipid analysis are evaluated. © 2013 Elsevier Ltd. All rights reserved.
Resumo:
Evaluates trends in the imagery built into GIS applications to supplement existing vector data of streets, boundaries, infrastructure and utilities. These include large area digital orthophotos, Landsat and SPOT data. Future developments include 3 to 5 metre pixel resolutions from satellites, 1 to 2 metres from aircraft. GPS and improved image analysis techniques will also assist in improving resolution and accuracy.
Resumo:
Quantitative determination of modification of primary sediment features, by the activity of organisms (i.e., bioturbation) is essential in geosciences. Some methods proposed since the 1960s are mainly based on visual or subjective determinations. The first semiquantitative evaluations of the Bioturbation Index, Ichnofabric Index, or the amount of bioturbation were attempted, in the best cases using a series of flashcards designed in different situations. Recently, more effective methods involve the use of analytical and computational methods such as X-rays, magnetic resonance imaging or computed tomography; these methods are complex and often expensive. This paper presents a compilation of different methods, using Adobe® Photoshop® software CS6, for digital estimation that are a part of the IDIAP (Ichnological Digital Analysis Images Package), which is an inexpensive alternative to recently proposed methods, easy to use, and especially recommended for core samples. The different methods — “Similar Pixel Selection Method (SPSM)”, “Magic Wand Method (MWM)” and the “Color Range Selection Method (CRSM)” — entail advantages and disadvantages depending on the sediment (e.g., composition, color, texture, porosity, etc.) and ichnological features (size of traces, infilling material, burrow wall, etc.). The IDIAP provides an estimation of the amount of trace fossils produced by a particular ichnotaxon, by a whole ichnocoenosis or even for a complete ichnofabric. We recommend the application of the complete IDIAP to a given case study, followed by selection of the most appropriate method. The IDIAP was applied to core material recovered from the IODP Expedition 339, enabling us, for the first time, to arrive at a quantitative estimation of the discrete trace fossil assemblage in core samples.
Resumo:
This contribution outlines Synchrotron-based X-ray micro-tomography and its potential use in structural geology and rock mechanics. The paper complements several recent reviews of X-ray microtomography. We summarize the general approach to data acquisition, post-processing as well as analysis and thereby aim to provide an entry point for the interested reader. The paper includes tables listing relevant beamlines, a list of all available imaging techniques, and available free and commercial software packages for data visualization and quantification. We highlight potential applications in a review of relevant literature including time-resolved experiments and digital rock physics. The paper concludes with a report on ongoing developments and upgrades at synchrotron facilities to frame the future possibilities for imaging sub-second processes in centimetre-sized samples.
Resumo:
We first classify the state-of-the-art stream authentication problem in the multicast environment and group them into Signing and MAC approaches. A new approach for authenticating digital streams using Threshold Techniques is introduced. The new approach main advantages are in tolerating packet loss, up to a threshold number, and having a minimum space overhead. It is most suitable for multicast applications running over lossy, unreliable communication channels while, in same time, are pertain the security requirements. We use linear equations based on Lagrange polynomial interpolation and Combinatorial Design methods.
Resumo:
For the renewable energy sources whose outputs vary continuously, a Z-source current-type inverter has been proposed as a possible buck-boost alternative for grid-interfacing. With a unique X-shaped LC network connected between its dc power source and inverter topology, Z-source current-type inverter is however expected to suffer from compounded resonant complications in addition to those associated with its second-order output filter. To improve its damping performance, this paper proposes the careful integration of Posicast or three-step compensators before the inverter pulse-width modulator for damping triggered resonant oscillations. In total, two compensators are needed for wave-shaping the inverter boost factor and modulation ratio, and they can conveniently be implemented using first-in first-out stacks and embedded timers of modern digital signal processors widely used in motion control applications. Both techniques are found to damp resonance of ac filter well, but for cases of transiting from current-buck to boost state, three-step technique is less effective due to the sudden intermediate discharging interval introduced by its non-monotonic stepping (unlike the monotonic stepping of Posicast damping). These findings have been confirmed both in simulations and experiments using an implemented laboratory prototype.