939 resultados para Dairy fermentation


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The growth of Lactobacillus fermentum was studied in mixed culture with Saccharomyces cerevisiae during alcoholic fermentation of high test molasses (HTM). Yeast extract or a group of 17 amino acids caused a strong and fast decrease in yeast viability due to the strong increase of acidity produced by bacteria. Pure culture of Lactobacillus fermentum in dry sugar cane broth confirmed amino acids as the main nutrients needed to stimulate the growth of bacterial contaminant during alcoholic fermentation. The absence of L. fermentum growth was obtained when leucine: isoleucine or valine were not added to the medium. Phenylalanine, alanine, glutamic acid, cystine, proline, histidine, arginine, threonine, tryptophane, serine and methionine inhibited the bacterial growth at least in one of the cultures of L. fermentum tested.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Sera collected from 447 dairy cattle on 14 dairy farms were tested for Neospora caninum antibodies by use of an immunofluorescent antibody technique. Positive reactions with titres greater than or equal to 1:200 were found in 63 (14.09%) of animals. Neospora positive sera were also tested for Toxoplasma gondii antibodies by using a commercial latex agglutination test. Antibodies to T. gondii were detected in 3 (4.76%) of 63 N. caninum positive sera. These results indicate that N. caninum infection is widespread among dairy cattle in Bahia state. (C) 1999 Elsevier B.V. B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Maltose and glucose fermentations by industrial brewing and wine yeasts strains were strongly affected by the structural complexity of the nitrogen source. In this study, four Saccharomyces cerevisiae strains, two brewing and two wine yeasts, were grown in a medium containing maltose or glucose supplemented with a nitrogen source varying from a single ammonium salt (ammonium sulfate) to free amino acids (casamino acids) and peptides (peptone). Diauxie was observed at low sugar concentration for brewing and wine strains, independent of nitrogen supplementation, and the type of sugar. At high sugar concentrations altered patterns of sugar fermentation were observed, and biomass accumulation and ethanol production depended on the nature of the nitrogen source and were different for brewing and wine strains. In maltose, high biomass production was observed under peptone and casamino acids for the brewing and wine strains, however efficient maltose utilization and high ethanol production was only observed in the presence of casamino acids for one brewing and one wine strain studied. Conversely, peptone and casamino acids induced higher biomass and ethanol production for the two other brewing and wine strains studied. With glucose, in general, peptone induced higher fermentation performance for all strains, and one brewing and wine strain produced the same amount of ethanol with peptone and casamino acids supplementation. Ammonium salts always induced poor yeast performance. The results described in this paper suggest that the complex nitrogen composition of the cultivation medium may create conditions resembling those responsible for inducing sluggish/stuck fermentation, and indicate that the kind and concentration of sugar, the complexity of nitrogen source and the yeast genetic background influence optimal industrial yeast fermentation performance.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

An extracellular polygalacturonase was isolated from 5-day culture filtrates of Thermoascus aurantiacus CBMAI-756 and purified by gel filtration and ion-exchange chromatography. The enzyme was maximally active at pH 5.5 and 60-65 degrees C. The apparent K (m) with citrus pectin was 1.46 mg/ml and the V (max) was 2433.3 mu mol/min/mg. The apparent molecular weight of the enzyme was 30 kDa. The enzyme was 100% stable at 50 degrees C for 1 h and showed a half-life of 10 min at 60 degrees C. Polygalacturonase was stable at pH 5.0-5.5 and maintained 33% of initial activity at pH 9.0. Metal ions, such as Zn+2, Mn+2, and Hg+2, inhibited 50, 75 and 100% of enzyme activity. The purified polygalacturonase was shown to be an endo/exo-enzyme, releasing mono, di and tri-galacturonic acids within 10 min of hydrolysis.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Maintenance of high cell viability was the main characteristic of our new strains of thermotolerant Saccharomyces. Total sugar conversion to ethanol was observed for sugarcane juice fermentation at 38-40-degrees-C in less than 10 h and without continuous aeration of the culture. Invertase activity differed among the selected strains and increased during fermentation but was not dependent on cell viability. Invertase activity of the cells and optimum temperature for growth, as well as velocity of ethanol formation, were dependent on medium composition and the type of strain used. At high sugarcane syrup concentrations, the best temperature for ethanol formation by strain 781 was 35-degrees-C. Distinct differences among the velocities of ethanol production using selected strains were also observed in sugarcane syrup at 35-38-degrees-C.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

New yeast strains for alcoholic fermentation were isolated from samples collected from Brazilian alcohol factories at the end of the sugar cane crop season. They were selected by their capacity of fermenting concentrated sugar cane syrup as well as high sucrose concentrations in synthetic medium with a conversion efficiency of 89-92%. The strains were identified as Saccharomyces cerevisiae.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

3,4,4'-trichlorocarbanilide (TCC) was rested as a new method of bacterial growth control for S. cerevisiae alcoholic fermentations of diluted high test molasses (HTM). Minimal inhibitory concentration (MIC) was tested to determine the necessary concentration of TCC to control bacterial growth. The fed-batch alcoholic fermentation process was used with cell recycle similar to industrial conditions and Lactobacillus fermentum CCT 1407 was mixed in the first inoculum to grow with the yeast. Yeast extract was added into the must to stimulate bacterial growth. The best results of TCC's MIC to bacterial growth of Lactobacillus fermentum and Leuconostoc mesenteroides (< 0.125-1.0 mu g/ml) and Saccharomyces cerevisiae (16 mu g/ml) occurred when it was combined with sodium dodecylsulphate (SDS) in a 1: 4 TCC/SDS ratio (wt/wt) in distilled water solution. 1.8 g/l TCC entrapped in calcium alginate added to the must with yeast extract inhibited the growth of Lactobacillus fermentum CCT 1407 maintaining a controlled acidity, higher yeast viability and up to 20.8% of improvement in the average of alcoholic efficiency. Addition of 0.075 g/l TCC entrapped in calcium alginate and 1.67 mg/l SDS in the wort with yeast extract (0-5.0 g/l), inhibited and controlled the extensive bacterial contamination for 19 cycles of fermentation. (C) 1998 Published by Elsevier B.V. Ltd.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The aim of this study was analyze the (co)variance components and genetic and phenotypic relationships in the following traits: accumulated milk yield at 270 days (MY270,), observed until 305 days of lactation; accumulated milk yield at 270 days (MY270/A) and at 305 days (MY305), observed until 335 days of lactation; mozzarella cheese yield (MCY) and fat (FP) and protein (PP) percentage, observed until 335 days of lactation. The (co)variance components were estimated by Restricted Maximum Likelihood methodology in analyses single, two and three-traits using animal models. Heritability estimated for MY270, MY270/A, MY305, MCY, FP and PP were 0.22; 0.24, 0.25, 0.14, 0.29 and 0.40 respectively. The genetic correlations between MCY and the variables MY270, MY270/A, MY305, PP and FP was: 0.85; 1.00; 0.89; 0.14 and 0.06, respectively. This way, the selection for the production of milk in long period should increase MCY. However, in the search of animals that produce milk with quality, the genetic parameters suggest that another index should be composed allying these studied traits.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Recently a protocol was developed that precisely synchronizes the time of ovulation in lactating dairy cows (Ovsynch; GnRH-7d-PGF(2 alpha)-2d-GnRH). We evaluated whether initiation of Ovsynch on different days of the estrous cycle altered the effectiveness of this protocol. The percentage of cows (n=156) ovulating to the first GnRH was 64% and varied (P<0.01) by stage of estrous cycle. Treatment with PGF(2 alpha) was effective, with 93% of cows having low progesterone at second GnRH. The overall percentage of cows that ovulated after second GnRH (synchronization rate) was 87% and varied by response to first GnRH (92% if ovulation to first GnRH vs 79% if no ovulation; P<0.05). There were 6% of cows that ovulated before the second injection of GnRH and 7% with no detectable ovulation by 48 h after second GnRH. Maximal diameter of the ovulatory follicle varied by stage of estrous cycle, with cows in which Ovsynch was initiated at midcycle having the smallest follicles. In addition, milk production and serum progesterone concentration on the day of PGF(2 alpha) affected (P<0.05) size of the ovulatory follicle. Using these results we analyzed pregnancy rate at Days 28 and 98 after Al for cows (n=404) in which Ovsynch was initiated on known days of the estrous cycle. Pregnancy rate was lower for cows expected to ovulate larger follicles than those expected to ovulate smaller follicles (P<0.05; 32 vs 42%). Thus, although overall synchronization rate with Ovsynch was above, 85%, there were clear differences in response according to day of protocol initiation. Cows in which Ovsynch was initiated near midcycle had smaller ovulatory follicles and greater pregnancy rates. (C) 1999 by Elsevier B.V.