633 resultados para Cambrian explosion
Resumo:
Petri Nets are a formal, graphical and executable modeling technique for the specification and analysis of concurrent and distributed systems and have been widely applied in computer science and many other engineering disciplines. Low level Petri nets are simple and useful for modeling control flows but not powerful enough to define data and system functionality. High level Petri nets (HLPNs) have been developed to support data and functionality definitions, such as using complex structured data as tokens and algebraic expressions as transition formulas. Compared to low level Petri nets, HLPNs result in compact system models that are easier to be understood. Therefore, HLPNs are more useful in modeling complex systems. There are two issues in using HLPNs - modeling and analysis. Modeling concerns the abstracting and representing the systems under consideration using HLPNs, and analysis deals with effective ways study the behaviors and properties of the resulting HLPN models. In this dissertation, several modeling and analysis techniques for HLPNs are studied, which are integrated into a framework that is supported by a tool. For modeling, this framework integrates two formal languages: a type of HLPNs called Predicate Transition Net (PrT Net) is used to model a system's behavior and a first-order linear time temporal logic (FOLTL) to specify the system's properties. The main contribution of this dissertation with regard to modeling is to develop a software tool to support the formal modeling capabilities in this framework. For analysis, this framework combines three complementary techniques, simulation, explicit state model checking and bounded model checking (BMC). Simulation is a straightforward and speedy method, but only covers some execution paths in a HLPN model. Explicit state model checking covers all the execution paths but suffers from the state explosion problem. BMC is a tradeoff as it provides a certain level of coverage while more efficient than explicit state model checking. The main contribution of this dissertation with regard to analysis is adapting BMC to analyze HLPN models and integrating the three complementary analysis techniques in a software tool to support the formal analysis capabilities in this framework. The SAMTools developed for this framework in this dissertation integrates three tools: PIPE+ for HLPNs behavioral modeling and simulation, SAMAT for hierarchical structural modeling and property specification, and PIPE+Verifier for behavioral verification.
Resumo:
Rare-metal alkali (quartz-feldspathic) metasomatites are considered in terms of their geologic position, structure, and composition. Their petrochemical and geochemical characteristics are given. In the Polar Urals, the metasomatites occur as lenticular and tube-like bodies in the fault zones of the Cambrian basement within the Kharbey block. Three types of the metasomatites, dated at ~300 Ma, have been recognised: quartz-bifeldspathic (kvalmites), quarzt-albitic, and albitites. They belong to the formation of quartz-feldspathic metasomatites of the fault zones.
Resumo:
The Precambrian basement beneath the Pechora Basin of northern Russia is known from deep (up to approx. 4.5 km) drill holes to be largely composed of Neoproterozoic successions, variously deformed and metamorphosed and intruded by magmatic suites of Vendian age. Presented here are new single- zircon, Pb-evaporation (Kober method) ages from eight intrusions across the Izhma, Pechora and Bolshezemel'skaya Zones, all from below the Lower Ordovician (locally Middle Cambrian) unconformity. The majority of the intrusions (six) yield remarkably similar ages of 550-560 Ma, apparently dating a widespread pulse of late- to post-tectonic magmatism. An early Vendian granite (618 Ma) has been identified in the northeasternmost region (Bolshezemel'skaya zone) and a Devonian granodiorite (380 Ma) in the Pechora Zone, where mid to late Palaeozoic magmatism has been previously reported. Evidence of inheritance in the zircon populations suggests the presence of Mesoproterozoic crust beneath the Neoproterozoic complexes.
Resumo:
An integrated, high-resolution chemostratigraphic (C, O and Sr isotopes) and magnetostratigraphic study through the upper Middle Cambrian - lowermost Ordovician shallow-marine carbonates of the northwestern margin of the Siberian Platform is reported. The interval was analysed at the Kulyumbe section, which is exposed along the Kulyumbe River: an eastern tributary of the Enisej River. It comprises the upper Ust'-Brus, Labaz, Orakta, Kulyumbe, Ujgur, and lower Iltyk formations and includes the Steptoean positive carbon isotopic excursion (SPICE) studied here in detail from upper Cambrian carbonates of the Siberian Platform for the first time. The peak of the excursion, showing d13C positive values as high as +4.6? and least-altered 87Sr/86Sr ratios of 0.70909, is reported herein from the Yurakhian Horizon of the Kulyumbe Formation. The stratigraphic position of the SPICE excursion does not support traditional correlation of the boundary between the Orakta and Labaz formations at Kulyumbe River with its supposedly equivalent level in Australia, Laurentia, South China, and Kazakhstan, where the Glyptagnostus stolidotus and G. reticulatus biozones are known to immediately precede the SPICE excursion and span the Middle-Upper Cambrian boundary. The Cambrian-Ordovician boundary is probably situated in the middle Nyajan Horizon of the Iltyk Formation, in which carbon isotope values show a local maximum below a decrease in the upper part of the Nyajan Horizon, attributed herein to the Tremadocian. A refined magnetic polarity sequence shows that the geomagnetic reversal frequency was very high during the Middle Cambrian at 5-10 reversals per Ma, assuming a total duration of ~10 Ma and up to 100 magnetic intervals in the Middle Cambrian. By contrast, the sequence attributed herein to the Upper Cambrian on chemostratigraphic grounds contains only 10-11 magnetic intervals. Preprint in Open Access hdl:10013/epic.30209.d001
Resumo:
Carbon isotopic data from the Selinde section in the southeastern part of the Siberian platform area are correlated with the reference isotopic profile from the Lower Cambrian stratotype sections of the Lena Aldan region, but also show additional d13C excursions unrecognized there. The chemostratigraphic correlation suggests that the geological and fossil record of the lower Pestrotsvet Formation in the Selinde section has a deeper history than the stratotype region. This conclusion is important for both constraining the age of the earliest Cambrian marine transgression on the Siberian platform and providing a clearer understanding of the pace and order of early Cambrian geochemical and biological events.
Resumo:
The Shackleton Range can be divided into three major units: (1) The East Antarctic Craton and its sedimentary cover (Read Group and Watts Needle Formation), (2) the allochthonous Mount Wegener Nappe (Mount Wegener Formation, Stephenson Bastion Formation, and Wyeth Heights Formation), and (3) the northern belt (basement: Pioneer and Stratton Groups, sedimentary cover: Haskard Highlands Formation (allochthonous?), and Blaiklock Glacier Group). The northern units are thrust over the southern ones. The thrusting is related to the Ross Orogeny. The Mount Wegener Nappe, which appears to be a homogeneous tectonic unit, consists of a Precambrian basement (Stephenson Bastion Formation, Wyeth Heights Formation?) and a Cambrian cover (Mount Wegener Formation). Some questions are still open for discussion: the position of the Haskard Highlands Formation (trilobite shales) may be erratic or represent a tectonic sliver, the relation of the former Turnpike Bluff Group, the origin of the crystalline basement west of Stephenson Bastion and others.
Resumo:
Investor State Dispute Settlement (ISDS) has gained prominence in recent years with an explosion in the number of investor claims against states. While the evolution of this type of arbitration was expected, its focus and context was not. Investors are currently bringing actions against developed states in unanticipated policy areas. Greece, facing actions from investors challenging its debt haircut and Spain, battling investor challenges to its revamped energy policy are examples of the use of arbitration as a political as well as a dispute resolution tool. It is for this reason why the proposal for the inclusion of ISDS in the Transatlantic Trade and Investment Partnership (TTIP) has caused so much heated discussion. This paper examines the recent evolution and likely trajectory of investor state dispute settlement, reflecting on consequences for perceptions of arbitration and its links with politics and economics.
Resumo:
Energy-efficient computing remains a critical challenge across the wide range of future data-processing engines — from ultra-low-power embedded systems to servers, mainframes, and supercomputers. In addition, the advent of cloud and mobile computing as well as the explosion of IoT technologies have created new research challenges in the already complex, multidimensional space of modern and future computer systems. These new research challenges led to the establishment of the IEEE Rebooting Computing Initiative, which specifically addresses novel low-power solutions and technologies as one of the main areas of concern.With this in mind, we thought it timely to survey the state of the art of energy-efficient computing.
Resumo:
Mallorca, the largest of the Balearic Islands, is a well-known summer holidays destination; an ideal place to relax and enjoy the sun and the sea. That tourist gaze reflected on postcards results from advertising campaigns, where cinema played an important role with documentaries and fiction films. The origins of that iconography started in the decades of the 1920’s and 1930’s, reflecting the so-called myth of the “island of calm”. On the other hand, the films of the 1950’s and 1960’s created new stereotypes related to the mass tourism boom. Busy beaches and the white bodies of tourists replaced white sandy beaches, mountains and landscapes shown up in the movies of the early decades of the 20th century. Besides, hotels and nightclubs also replaced monuments, rural landscapes and folk exhibitions. These tourist images mirror the social and spatial transformations of Mallorca, under standardization processes like other seaside mass tourist destinations. The identity was rebuilt on the foundations of "modernity". Although "balearization" has not ceased, nowadays filmmaking about Mallorca is advertising again a stereotype close to that one of the 1920s and 1930s, glorifying the myth of the "island of calm". This singular identity makes the island more profitable for capital that searches socio-spatial differentiation in post-fordist times.
Resumo:
The mental logic theory does not accept the disjunction introduction rule of standard propositional calculus as a natural schema of the human mind. In this way, the problem that I want to show in this paper is that, however, that theory does admit another much more complex schema in which the mentioned rule must be used as a previous step. So, I try to argue that this is a very important problem that the mental logic theory needs to solve, and claim that another rival theory, the mental models theory, does not have these difficulties.
Resumo:
The violent merger of two carbon-oxygen white dwarfs has been proposed as a viable progenitor for some Type Ia supernovae. However, it has been argued that the strong ejecta asymmetries produced by this model might be inconsistent with the low degree of polarization typically observed in Type Ia supernova explosions. Here, we test this claim by carrying out a spectropolarimetric analysis for the model proposed by Pakmor et al. for an explosion triggered during the merger of a 1.1 and 0.9 M⊙ carbon-oxygen white dwarf binary system. Owing to the asymmetries of the ejecta, the polarization signal varies significantly with viewing angle. We find that polarization levels for observers in the equatorial plane are modest (≲1 per cent) and show clear evidence for a dominant axis, as a consequence of the ejecta symmetry about the orbital plane. In contrast, orientations out of the plane are associated with higher degrees of polarization and departures from a dominant axis. While the particular model studied here gives a good match to highly polarized events such as SN 2004dt, it has difficulties in reproducing the low polarization levels commonly observed in normal Type Ia supernovae. Specifically, we find that significant asymmetries in the element distribution result in a wealth of strong polarization features that are not observed in the majority of currently available spectropolarimetric data of Type Ia supernovae. Future studies will map out the parameter space of the merger scenario to investigate if alternative models can provide better agreement with observations.
Resumo:
We present results based on observations of SN 2015H which belongs to the small group of objects similar to SN 2002cx, otherwise known as type Iax supernovae. The availability of deep pre-explosion imaging allowed us to place tight constraints on the explosion epoch. Our observational campaign began approximately one day post-explosion, and extended over a period of about 150 days post maximum light, making it one of the best observed objects of this class to date. We find a peak magnitude of Mr = -17.27± 0.07, and a (Δm15)r = 0.69 ± 0.04. Comparing our observations to synthetic spectra generated from simulations of deflagrations of Chandrasekhar mass carbon-oxygen white dwarfs, we find reasonable agreement with models of weak deflagrations that result in the ejection of ∼0.2 M⊙ of material containing ∼0.07 M⊙ of 56Ni. The model light curve however, evolves more rapidly than observations, suggesting that a higher ejecta mass is to be favoured. Nevertheless, empirical modelling of the pseudo-bolometric light curve suggests that ≲ 0.6 M⊙ of material was ejected, implying that the white dwarf is not completely disrupted, and that a bound remnant is a likely outcome.
Resumo:
We present a photometric and spectroscopic study of a reddened type Ic supernova (SN) 2005at. We report our results based on the available data of SN 2005at, including late-time observations from the Spitzer Space Telescope and the Hubble Space Telescope. In particular, late-time mid-infrared observations are something rare for type Ib/c SNe. In our study we find SN 2005at to be very similar photometrically and spectroscopically to another nearby type Ic SN 2007gr, underlining the prototypical nature of this well-followed type Ic event. The spectroscopy of both events shows similar narrow spectral line features. The radio observations of SN 2005at are consistent with fast evolution and low luminosity at radio wavelengths. The late-time Spitzer data suggest the presence of an unresolved light echo from interstellar dust and dust formation in the ejecta, both of which are unique observations for a type Ic SN. The late-time Hubble observations reveal a faint point source coincident with SN 2005at, which is very likely either a declining light echo of the SN or a compact cluster. For completeness we study ground-based pre-explosion archival images of the explosion site of SN 2005at, however this only yielded very shallow upper limits for the SN progenitor star. We derive a host galaxy extinction of AV ∼ 1.9 mag for SN 2005at, which is relatively high for a SN in a normal spiral galaxy not viewed edge-on.
Resumo:
The direct detection of a stellar system that explodes as a Type Ia supernova (SN Ia) has not yet been successful. Various indirect methods have been used to investigate SN Ia progenitor systems but none have produced conclusive results. A prediction of single-degenerate models is that H- (or He-) rich material from the envelope of the companion star should be swept up by the SN ejecta in the explosion. Seven SNe Ia have been analysed to date looking for signs of H-rich material in their late-time spectra and none were detected. We present results from new late-time spectra of 11 SNe Ia obtained at the Very Large Telescope using XShooter and FORS2. We present the tentative detection of Hα emission for SN 2013ct, corresponding to ∼0.007 M⊙ of stripped/ablated companion star material (under the assumptions of the spectral modelling). This mass is significantly lower than expected for single-degenerate scenarios, suggesting that >0.1 M⊙ of H-rich is present but not observed. We do not detect Hα emission in the other 10 SNe Ia. This brings the total sample of normal SNe Ia with non-detections (<0.001–0.058 M⊙) of H-rich material to 17 events. The simplest explanation for these non-detections is that these objects did not result from the explosion of a CO white dwarf accreting matter from a H-rich companion star via Roche lobe overflow or symbiotic channels. However, further spectral modelling is needed to confirm this. We also find no evidence of He-emission features, but models with He-rich companion stars are not available to place mass limits.
Resumo:
We present a new approach to understand the landscape of supernova explosion energies, ejected nickel masses, and neutron star birth masses. In contrast to other recent parametric approaches, our model predicts the properties of neutrino-driven explosions based on the pre-collapse stellar structure without the need for hydrodynamic simulations. The model is based on physically motivated scaling laws and simple differential equations describing the shock propagation, the contraction of the neutron star, the neutrino emission, the heating conditions, and the explosion energetics. Using model parameters compatible with multi-D simulations and a fine grid of thousands of supernova progenitors, we obtain a variegated landscape of neutron star and black hole formation similar to other parametrized approaches and find good agreement with semi-empirical measures for the ‘explodability’ of massive stars. Our predicted explosion properties largely conform to observed correlations between the nickel mass and explosion energy. Accounting for the coexistence of outflows and downflows during the explosion phase, we naturally obtain a positive correlation between explosion energy and ejecta mass. These correlations are relatively robust against parameter variations, but our results suggest that there is considerable leeway in parametric models to widen or narrow the mass ranges for black hole and neutron star formation and to scale explosion energies up or down. Our model is currently limited to an all-or-nothing treatment of fallback and there remain some minor discrepancies between model predictions and observational constraints.