992 resultados para 3D Sequential Imaging
Resumo:
Desilication and a combination of alkaline followed by acid treatment were applied to MCM-22 zeolite using two different base concentrations. The samples were characterised by powder X-ray diffraction, Al-27 and Si-29 MAS-NMR spectroscopy, SEM, TEM and low temperature N-2 adsorption. The acidity of the samples was study through pyridine adsorption followed by FTIR spectroscopy and by the analyses of the hydroxyl region. The catalytic behaviour, anticipated by the effect of post-synthesis treatments on the acidity and space available inside the two internal pore systems was evaluated by using the model reaction of m-xylene transformation. The generation of mesoporosity was achieved upon alkaline treatment with 0.05 M NaOH solution and practically no additional gain was obtained when the more concentrate solution, 0.1 M, was used. Instead, Al extraction takes place along with Si, as shown by Si-29 and Al-27 MAS-NMR data, followed by Al deposition as extraframework species. Samples submitted to alkaline plus acid treatments present distinct behaviour. When the lowest NaOH solution was used no relevant effect was observed on the textural characteristics. Additionally, when the acid treatment was performed on an already fragilized MCM-22 structure, due to previous desilication with 0.1 M NaOH solution, the extraction of Al from both internal pore systems promotes their interconnection, evolving from a 2-D to a 3-D porous structure. This transformation has a marked effect in the catalytic behaviour, allowing an increase of m-xylene conversion as a consequence of an easier and faster molecular traffic in the 3-D structure. On the other hand, the continuous deposition of extraframework Al species inside the pores leads to a shape selective effect that privileges the formation of the more valuable isomer p-xylene.
Resumo:
We propose a 3-D gravity model for the volcanic structure of the island of Maio (Cape Verde archipelago) with the objective of solving some open questions concerning the geometry and depth of the intrusive Central Igneous Complex. A gravity survey was made covering almost the entire surface of the island. The gravity data was inverted through a non-linear 3-D approach which provided a model constructed in a random growth process. The residual Bouguer gravity field shows a single positive anomaly presenting an elliptic shape with a NWSE trending long axis. This Bouguer gravity anomaly is slightly off-centred with the island but its outline is concordant with the surface exposure of the Central Igneous Complex. The gravimetric modelling shows a high-density volume whose centre of mass is about 4500 m deep. With increasing depth, and despite the restricted gravimetric resolution, the horizontal sections of the model suggest the presence of two distinct bodies, whose relative position accounts for the elongated shape of the high positive Bouguer gravity anomaly. These bodies are interpreted as magma chambers whose coeval volcanic counterparts are no longer preserved. The orientation defined by the two bodies is similar to that of other structures known in the southern group of the Cape Verde islands, thus suggesting a possible structural control constraining the location of the plutonic intrusions.
Resumo:
This paper reports on the creation of an interface for 3D virtual environments, computer-aided design applications or computer games. Standard computer interfaces are bound to 2D surfaces, e.g., computer mouses, keyboards, touch pads or touch screens. The Smart Object is intended to provide the user with a 3D interface by using sensors that register movement (inertial measurement unit), touch (touch screen) and voice (microphone). The design and development process as well as the tests and results are presented in this paper. The Smart Object was developed by a team of four third-year engineering students from diverse scientific backgrounds and nationalities during one semester.
Resumo:
Since the first in vivo studies of cerebral function with radionuclides by Ingvar and Lassen, nuclear medicine (NM) brain applications have evolved dramatically, with marked improvements in both methods and tracers. Consequently it is now possible to assess not only cerebral blood flow and energy metabolism but also neurotransmission. Planar functional imaging was soon substituted by single-photon emission computed tomography (SPECT) and positron emission tomography (PET); it now has limited application in brain imaging, being reserved for the assessment of brain death.
Resumo:
Marked regional variations in myocardial activity that are not related to myocardial perfusion defects.Verify the influence of CT-AC inMPI results in patients with BMI between 30 and 35 and higher than 30 for male and female population.
Resumo:
Myocardial perfusion imaging (MPI) is used on a daily basis to access coronary blood flow in patients that are suspected or have known Coronary Artery Disease (CAD). A Single Photon Emission Computed Tomography (SPECT) or and Positron Emission Tomography (PET) scan are used to access regional blood flow quantification either at rest or stress, the imaging acquisition is connected to an Electrocardiogram (ECG) and it is able to determine and quantify other myocardial parameters like myocardial wall thickness and wall motion. PET is not used so broadly due to its high procedure cost, the proximity with cyclotron, where are produced the majority of radiopharmaceuticals used in PET, due to their shor thalf-life. This work is intended to carry out a review of the tests relating to radiopharmaceuticals that are used in clinical practice in SPECT or PET for assessment of myocardial perfusion, also focusing very promising radiopharmaceuticals that are under investigation or in clinical trials with great potential for conventional nuclear medicine or PET, proceeding to a comparative analysis of both techniques and respective radiopharmaceuticals used.
Resumo:
Background - Medical image perception research relies on visual data to study the diagnostic relationship between observers and medical images. A consistent method to assess visual function for participants in medical imaging research has not been developed and represents a significant gap in existing research. Methods - Three visual assessment factors appropriate to observer studies were identified: visual acuity, contrast sensitivity, and stereopsis. A test was designed for each, and 30 radiography observers (mean age 31.6 years) participated in each test. Results - Mean binocular visual acuity for distance was 20/14 for all observers. The difference between observers who did and did not use corrective lenses was not statistically significant (P = .12). All subjects had a normal value for near visual acuity and stereoacuity. Contrast sensitivity was better than population norms. Conclusion - All observers had normal visual function and could participate in medical imaging visual analysis studies. Protocols of evaluation and populations norms are provided. Further studies are necessary to understand fully the relationship between visual performance on tests and diagnostic accuracy in practice.
Resumo:
Dissertação apresentada à Faculdade de Ciências e Tecnologia da Universidade Nova de Lisboa para obtenção do grau de Mestre em Engenharia Geológica (Georrecursos)
Resumo:
Female albino rats were used for the sequential histopathological study of experimental paracoccidioidomycosis. The animals were inoculated intraperitoneally with a strain of Paracoccidioides brasiliensis in the yeast-like phase, and sacrificed at given intervals from 1 to 168 days after inoculation; each animal received an inoculum of 4 x 10(6) cells in 0.8 ml of saline. The control group received saline containing scrapings of the culture medium. Tissue from the inoculation site was examined. The cellular population, the extracellular matrix, and the presence and characteristics of fungi were analysed in the inflammatory granulomatous process by light microscopy. The results allowed to separate the kinetic of the inflammatory response into three stages: 1) neutrophilic or macrophagic-neutrophilic; 2) pre-granulomatous; 3) granulomatous. Synthesis of the extracellular matrix began with the depositing of fibrin-like material, and increased gradually with deposits of collagen, proteoglycans, and glycoproteins. Parasites were present in all of the examined periods. Recurrences of the disease were clearly shown through the concurrence of recently-formed granulomas with older granulomas, implying that this type of granulomatous process does not eliminate the disease, nor is it able to limit fungal dissemination over a prolonged period of time.
Resumo:
Purpose: This study aims to investigate the influence of tube potential (kVp) variation in relation to perceptual image quality and effective dose for pelvis using automatic exposure control (AEC) and non-AEC in a computed radiography (CR) system. Methods and Materials: To determine the effects of using AEC and non-AEC by applying the 10 kVp rule in two experiments using an anthropomorphic pelvis phantom. Images were acquired using 10 kVp increments (60-120 kVp) for both experiments. The first experiment, based on seven AEC combinations, produced 49 images. The mean mAs from each kVp increment were used as a baseline for the second experiment producing 35 images. A total of 84 images were produced and a panel of 5 experienced observers participated for the image scoring using the 2 AFC visual grading software. PCXMC software was used to estimate the effective dose. Results: A decrease in perceptual image quality as the kVp increases was observed both in non-AEC and AEC experiments, however no significant statistical differences (p> 0.05) were found. Image quality scores from all observers at 10 kVp increments for all mAs values using non-AEC mode demonstrates a better score up to 90 kVp. Effective dose results show a statistical significant decrease (p=0.000) on the 75th quartile from 0.3 mSv at 60 kVp to 0.1 mSv at 120 kVp when applying the 10 kVp rule in non-AEC mode. Conclusion: No significant reduction in perceptual image quality is observed when increasing kVp whilst a marked and significant effective dose reduction is observed.
Resumo:
Conventional film based X-ray imaging systems are being replaced by their digital equivalents. Different approaches are being followed by considering direct or indirect conversion, with the later technique dominating. The typical, indirect conversion, X-ray panel detector uses a phosphor for X-ray conversion coupled to a large area array of amorphous silicon based optical sensors and a couple of switching thin film transistors (TFT). The pixel information can then be readout by switching the correspondent line and column transistors, routing the signal to an external amplifier. In this work we follow an alternative approach, where the electrical switching performed by the TFT is replaced by optical scanning using a low power laser beam and a sensing/switching PINPIN structure, thus resulting in a simpler device. The optically active device is a PINPIN array, sharing both front and back electrical contacts, deposited over a glass substrate. During X-ray exposure, each sensing side photodiode collects photons generated by the scintillator screen (560 nm), charging its internal capacitance. Subsequently a laser beam (445 nm) scans the switching diodes (back side) retrieving the stored charge in a sequential way, reconstructing the image. In this paper we present recent work on the optoelectronic characterization of the PINPIN structure to be incorporated in the X-ray image sensor. The results from the optoelectronic characterization of the device and the dependence on scanning beam parameters are presented and discussed. Preliminary results of line scans are also presented. (C) 2014 Elsevier B.V. All rights reserved.
Resumo:
A 70Co-30Ni dendritic alloy was produced on stainless steel by pulse electrodeposition in the cathodic domain, and oxidized by potential cycling. X-ray diffraction (XRD) identified the presence of two phases and scanning electron microscopy (SEM) evidenced an open 3D highly branched dendritic morphology. After potential cycling in 1 M KOH, SEM and X-ray photoelectron spectroscopy (XPS) revealed, respectively, the presence of thin nanoplates, composed of Co and Ni oxi-hydroxides and hydroxides over the original dendritic film. Cyclic voltammetry tests showd the presence of redox peaks assigned to the oxidation and reduction of Ni and Co centres in the surface film. Charge/discharge measurements revealed capacity values of 121 mAh g(1) at 1 mA cm(2). The capacity retention under 8000 cycles was above 70%, stating the good reversibility of these redox materials and its suitability to be used as charge storage electrodes. Electrochemical impedance spectroscopy (EIS) spectra, taken under different applied bias, showed that the capacitance increased when the electrode was fully oxidized and decreased when the electrode was reduced, reflecting different states-of-charge of the electrode. (C) 2015 Elsevier Ltd. All rights reserved.
Resumo:
In this work, plasticizer agents were incorporated in a chitosan based formulation, as a strategy to improve the fragile structure of chitosan based-materials. Three different plasticizers: ethylene glycol, glycerol and sorbitol, were blended with chitosan to prepare 3D dense chitosan specimens. The properties of the obtained structures were assessed for mechanical, microstructural, physical and biocompatibility behavior. The results obtained revealed that from the different specimens prepared, the blend of chitosan with glycerol has superior mechanical properties and good biological behavior, making this chitosan based formulation a good candidate to improve robust chitosan structures for the construction of bioabsorbable orthopedic implants.
Resumo:
This paper addresses the estimation of surfaces from a set of 3D points using the unified framework described in [1]. This framework proposes the use of competitive learning for curve estimation, i.e., a set of points is defined on a deformable curve and they all compete to represent the available data. This paper extends the use of the unified framework to surface estimation. It o shown that competitive learning performes better than snakes, improving the model performance in the presence of concavities and allowing to desciminate close surfaces. The proposed model is evaluated in this paper using syntheticdata and medical images (MRI and ultrasound images).
Resumo:
Background: Mammography is considered the best imaging technique for breast cancer screening, and the radiographer plays an important role in its performance. Therefore, continuing education is critical to improving the performance of these professionals and thus providing better health care services. Objective: Our goal was to develop an e-learning course on breast imaging for radiographers, assessing its efficacy , effectiveness, and user satisfaction. Methods: A stratified randomized controlled trial was performed with radiographers and radiology students who already had mammography training, using pre- and post-knowledge tests, and satisfaction questionnaires. The primary outcome was the improvement in test results (percentage of correct answers), using intention-to-treat and per-protocol analysis. Results: A total of 54 participants were assigned to the intervention (20 students plus 34 radiographers) with 53 controls (19+34). The intervention was completed by 40 participants (11+29), with 4 (2+2) discontinued interventions, and 10 (7+3) lost to follow-up. Differences in the primary outcome were found between intervention and control: 21 versus 4 percentage points (pp), P<.001. Stratified analysis showed effect in radiographers (23 pp vs 4 pp; P=.004) but was unclear in students (18 pp vs 5 pp; P=.098). Nonetheless, differences in students’ posttest results were found (88% vs 63%; P=.003), which were absent in pretest (63% vs 63%; P=.106). The per-protocol analysis showed a higher effect (26 pp vs 2 pp; P<.001), both in students (25 pp vs 3 pp; P=.004) and radiographers (27 pp vs 2 pp; P<.001). Overall, 85% were satisfied with the course, and 88% considered it successful. Conclusions: This e-learning course is effective, especially for radiographers, which highlights the need for continuing education.