983 resultados para therapeutic monitoring
Resumo:
The methods for estimating patient exposure in x-ray imaging are based on the measurement of radiation incident on the patient. In digital imaging, the useful dose range of the detector is large and excessive doses may remain undetected. Therefore, real-time monitoring of radiation exposure is important. According to international recommendations, the measurement uncertainty should be lower than 7% (confidence level 95%). The kerma-area product (KAP) is a measurement quantity used for monitoring patient exposure to radiation. A field KAP meter is typically attached to an x-ray device, and it is important to recognize the effect of this measurement geometry on the response of the meter. In a tandem calibration method, introduced in this study, a field KAP meter is used in its clinical position and calibration is performed with a reference KAP meter. This method provides a practical way to calibrate field KAP meters. However, the reference KAP meters require comprehensive calibration. In the calibration laboratory it is recommended to use standard radiation qualities. These qualities do not entirely correspond to the large range of clinical radiation qualities. In this work, the energy dependence of the response of different KAP meter types was examined. According to our findings, the recommended accuracy in KAP measurements is difficult to achieve with conventional KAP meters because of their strong energy dependence. The energy dependence of the response of a novel large KAP meter was found out to be much lower than with a conventional KAP meter. The accuracy of the tandem method can be improved by using this meter type as a reference meter. A KAP meter cannot be used to determine the radiation exposure of patients in mammography, in which part of the radiation beam is always aimed directly at the detector without attenuation produced by the tissue. This work assessed whether pixel values from this detector area could be used to monitor the radiation beam incident on the patient. The results were congruent with the tube output calculation, which is the method generally used for this purpose. The recommended accuracy can be achieved with the studied method. New optimization of radiation qualities and dose level is needed when other detector types are introduced. In this work, the optimal selections were examined with one direct digital detector type. For this device, the use of radiation qualities with higher energies was recommended and appropriate image quality was achieved by increasing the low dose level of the system.
Resumo:
Although prevention and early detection of the disease greatly improved over the past few years, lung cancer remains the leading cause of cancer deaths. In order to be able to treat a larger population, we are in urgent need for novel treatments. While it is known that DNA repair genes play a major role in the oncogenic transformation, they also represent a weakness of cancers that constitute a therapeutic opportunity. To identify novel DNA repair genes implicated in Lung cancers, we conducted an in silico investigation to identify genes co-regulated with two DNA repair factors, BRCA2 and hSSB1. This approach allowed for the identification of EXOSC4, a component of the RNA Exosome machinery, as a potential factor involved in the maintenance of genome stability and that is deregulated in lung cancer.
Resumo:
Malignant pleural mesothelioma (MPM) is a rare aggressive cancer of the pleura. Asbestos exposure (through inhalation) is the most well established risk factor for mesothelioma. The current standard of care for patients suffering from MPM is a combination of cisplatin and pemetrexed (or alternatively cisplatin and raltitrexed). Most patients, however, die within 24 months of diagnosis. New therapies are therefore urgently required for this disease. Lysine acetyltransferases (KATs) including KAT5 have been linked with the development of cisplatin resistance. This gene may therefore be altered in MPM and could represent a novel candidate target for intervention. Using RT-PCR screening the expression of all known KAT5 variants was found to be markedly increased in malignant tumors compared to benign pleura. When separated according to histological subtype, KAT5 was significantly overexpressed in both the sarcomatoid and biphasic subgroups for all transcript variants. A panel of MPM cell lines including the normal pleural cells LP9 and Met5A was screened for expression of KAT5 variants. Treatment of cells with a small molecule inhibitor of KAT5 (MG-149) caused significant inhibition of cellular proliferation (p<0.0001), induction of apoptosis and was accompanied by significant induction of pro-inflammatory cytokines/chemokines.
Resumo:
Aims: To evaluate the potential therapeutic utility of histone deacetylase inhibitors (HDACi) in targeting VEGF receptors in non-small-cell lung cancer. Materials & methods: Non-small-cell lung cancer cells were screened for the VEGF receptors at the mRNA and protein levels, while cellular responses to various HDACi were examined. Results: Significant effects on the regulation of the VEGF receptors were observed in response to HDACi. These were associated with decreased secretion of VEGF, decreased cellular proliferation and increased apoptosis which could not be rescued by addition of exogenous recombinant VEGF. Direct remodeling of the VEGFR1 and VEGFR2 promoters was observed. In contrast, HDACi treatments resulted in significant downregulation of the Neuropilin receptors. Conclusion: Epigenetic targeting of the Neuropilin receptors may offer an effective treatment for lung cancer patients in the clinical setting.
Resumo:
Highly structured small peptides are the major toxic constituents of the venom of cone snails, a family of widely distributed predatory marine molluscs. These animals use the venom for rapid prey immobilization. The peptide components in the venom target a wide variety of membrane-bound ion channels and receptors. Many have been found to be highly selective for a diverse range of mammalian ion channels and receptors associated with pain-signaling pathways. Their small size, structural stability, and target specificity make them attractive pharmacologic agents. A select number of laboratories mainly from the United States, Europe, Australia, Israel, and China have been engaged in intense drug discovery programs based on peptides from a few snail species. Coastal India has an estimated 20-30% of the known cone species; however, few serious studies have been reported so far. We have begun a comprehensive program for the identification and characterization of peptides from cone snails found in Indian Coastal waters. This presentation reviews our progress over the last 2 years. As expected from the evolutionary history of these venom components, our search has yielded novel peptides of therapeutic promise from the new species that we have studied.
Resumo:
The resources of health systems are limited. There is a need for information concerning the performance of the health system for the purposes of decision-making. This study is about utilization of administrative registers in the context of health system performance evaluation. In order to address this issue, a multidisciplinary methodological framework for register-based data analysis is defined. Because the fixed structure of register-based data indirectly determines constraints on the theoretical constructs, it is essential to elaborate the whole analytic process with respect to the data. The fundamental methodological concepts and theories are synthesized into a data sensitive approach which helps to understand and overcome the problems that are likely to be encountered during a register-based data analyzing process. A pragmatically useful health system performance monitoring should produce valid information about the volume of the problems, about the use of services and about the effectiveness of provided services. A conceptual model for hip fracture performance assessment is constructed and the validity of Finnish registers as a data source for the purposes of performance assessment of hip fracture treatment is confirmed. Solutions to several pragmatic problems related to the development of a register-based hip fracture incidence surveillance system are proposed. The monitoring of effectiveness of treatment is shown to be possible in terms of care episodes. Finally, an example on the justification of a more detailed performance indicator to be used in the profiling of providers is given. In conclusion, it is possible to produce useful and valid information on health system performance by using Finnish register-based data. However, that seems to be far more complicated than is typically assumed. The perspectives given in this study introduce a necessary basis for further work and help in the routine implementation of a hip fracture monitoring system in Finland.
Resumo:
Prostate cancer is the most common cancer in males. Although many patients with localized disease can be cured with surgery and radiotherapy, advanced disease and especially castration resistant metastatic disease remains incurable, with a median life expectancy of less than 18 months. Oncolytic adenoviruses (Ads) are a new promising treatment against cancer due to their innate capacity to kill cancer cells. Viral replication in tumor cells leads to oncolysis and production of a multiplicity of new virions that are capable of further destroying cancerous tissue. Oncolytic Ads can be modified for tumor targeted infection and replication and be armed with therapeutic transgenes to maximize the oncolytic effect. Worldwide, clinical trials with oncolytic Ads have demonstrated good safety while the antitumor efficacy remains to be improved. Importantly, the best responses have been reported when oncolytic adenoviruses have been combined with standard cancer treatments, such as chemotherapy and radiation. Further, a challenge in many virotherapy approaches has been the monitoring of virus replication in vivo. Reporter genes have been extensively used as transgenes to evaluate the biodistribution of the virus and activity of specific promoters. However, these techniques are often limited to preclinical evaluation and not amenable to human use. The aim of the thesis was to find and develop new oncolytic Ads with maximum efficacy against metastatic, castration resistant prostate cancer and study them in vitro and in vivo combined to different forms of radiation therapy. Using combination therapy, we were aiming for better antitumor efficacy with reduced side effects. Capsid modified Ads for enhanced transduction were studied. Serotype 3 targeted chimera, Ad5/3, was found to have enhanced infectivity for prostate cancer and was used for developing new viruses for the study. Correlation between Ad-encoded marker peptide secretion and simultaneous viral replication was evaluated and the effects of radiotherapy on viral replication were studied in detail. We found that the repair of double strand breaks caused by ionizing radiation was inhibited by adenoviral proteins and led to autophagic cell death. Both subcutaneous models and intrapulmonary tumor models mimicking metastatic, aggressive disease were used in vivo. Virus efficacy was evaluated by intratumoral injections. Also, intravenous administration was evaluated to study the effectiveness in metastatic disease. Oncolytic adenovirus treatment led to significant tumor growth control and increased the survival rate of the mice. These results were further improved when oncolytic Ads were combined with radiation therapy. Oncolytic Ads expressing human sodium/iodide transporter (hNIS) as a transgene were evaluated for their oncolytic potency and for the functionality of hNIS in vitro and in vivo. Monitoring of viral replication was also assessed using different imaging modalities relative to clinical use. SPECT imaging of tumor-bearing mice was evaluated and combined with simultaneous CT-scanning to obtain important anatomical information on biodistribution, also in a three-dimensional form. It was shown that hNIS-expressing adenoviruses could harbour a bi-functional transgene allowing for localization and imaging of viral replication. Targeted radiotherapy was applied by systemic radioiodide administration and resulted in iodide accumulation into Ad-infected tumor. The combination treatment showed significantly enhanced antitumor efficacy in mice bearing prostate cancer tumors. In summary, the results presented above aim to provide new treatment modalities for castration resistant prostate cancer. Molecular insights were provided for better understanding of the benefits of combined radiation therapy and oncolytic adenoviruses, which will hopefully facilitate the translation of the approach into clinical use for humans.
Resumo:
Power system disturbances are often caused by faults on transmission lines. When faults occur in a power system, the protective relays detect the fault and initiate tripping of appropriate circuit breakers, which isolate the affected part from the rest of the power system. Generally Extra High Voltage (EHV) transmission substations in power systems are connected with multiple transmission lines to neighboring substations. In some cases mal-operation of relays can happen under varying operating conditions, because of inappropriate coordination of relay settings. Due to these actions the power system margins for contingencies are decreasing. Hence, power system protective relaying reliability becomes increasingly important. In this paper an approach is presented using Support Vector Machine (SVM) as an intelligent tool for identifying the faulted line that is emanating from a substation and finding the distance from the substation. Results on 24-bus equivalent EHV system, part of Indian southern grid, are presented for illustration purpose. This approach is particularly important to avoid mal-operation of relays following a disturbance in the neighboring line connected to the same substation and assuring secure operation of the power systems.
Resumo:
In this paper we show the applicability of Ant Colony Optimisation (ACO) techniques for pattern classification problem that arises in tool wear monitoring. In an earlier study, artificial neural networks and genetic programming have been successfully applied to tool wear monitoring problem. ACO is a recent addition to evolutionary computation technique that has gained attention for its ability to extract the underlying data relationships and express them in form of simple rules. Rules are extracted for data classification using training set of data points. These rules are then applied to set of data in the testing/validation set to obtain the classification accuracy. A major attraction in ACO based classification is the possibility of obtaining an expert system like rules that can be directly applied subsequently by the user in his/her application. The classification accuracy obtained in ACO based approach is as good as obtained in other biologically inspired techniques.
Resumo:
The problem of denoising damage indicator signals for improved operational health monitoring of systems is addressed by applying soft computing methods to design filters. Since measured data in operational settings is contaminated with noise and outliers, pattern recognition algorithms for fault detection and isolation can give false alarms. A direct approach to improving the fault detection and isolation is to remove noise and outliers from time series of measured data or damage indicators before performing fault detection and isolation. Many popular signal-processing approaches do not work well with damage indicator signals, which can contain sudden changes due to abrupt faults and non-Gaussian outliers. Signal-processing algorithms based on radial basis function (RBF) neural network and weighted recursive median (WRM) filters are explored for denoising simulated time series. The RBF neural network filter is developed using a K-means clustering algorithm and is much less computationally expensive to develop than feedforward neural networks trained using backpropagation. The nonlinear multimodal integer-programming problem of selecting optimal integer weights of the WRM filter is solved using genetic algorithm. Numerical results are obtained for helicopter rotor structural damage indicators based on simulated frequencies. Test signals consider low order polynomial growth of damage indicators with time to simulate gradual or incipient faults and step changes in the signal to simulate abrupt faults. Noise and outliers are added to the test signals. The WRM and RBF filters result in a noise reduction of 54 - 71 and 59 - 73% for the test signals considered in this study, respectively. Their performance is much better than the moving average FIR filter, which causes significant feature distortion and has poor outlier removal capabilities and shows the potential of soft computing methods for specific signal-processing applications.
Resumo:
The occurrence of gestational diabetes (GDM) during pregnancy is a powerful sign of a risk of later type 2 diabetes (T2D) and cardiovascular diseases (CVDs). The physiological basis for this disease progression is not yet fully understood, but increasing evidence exists on interplay of insulin resistance, subclinical inflammation, and more recently, on unbalance of the autonomic nervous system. Since the delay in development of T2D and CVD after GDM ranges from years to decades, better understanding of the pathophysiology of GDM could give us new tools for primary prevention. The present study was aimed at investigating the role of the sympathetic nervous system (SNS) in GDM and its associations with insulin and a variety of inflammatory cytokines and coagulation and fibrinolysis markers. This thesis covers two separate study lines. Firstly, we investigated 41 women with GDM and 22 healthy pregnant and 14 non-pregnant controls during the night in hospital. Blood samples were drawn at 24:00, 4:00 and 7:00 h to determine the concentrations of plasma glucose, insulin, noradrenaline (NA) and adrenomedullin, markers of subclinical inflammation, coagulation and fibrinolysis variables and platelet function. Overnight holter ECG recording was performed for analysis of heart rate variability (HRV). Secondly, we studied 87 overweight hypertensive women with natural menopause. They were randomised to use a central sympatholytic agent, moxonidine (0.3mg twice daily), the β-blocking agent atenolol (50 mg once daily+blacebo once daily) for 8 weeks. Inflammatory markers and adiponectin were analysed at the beginning and after 8 weeks. Activation of the SNS (increase in NA, decreased HRV) was seen in pregnant vs. non-pregnant women, but no difference existed between GDM and normal pregnancy. However, modulation (internal rhythm) of HRV was attenuated in GDM. Insulin and inflammatory cytokine levels were comparable in all pregnant women but nocturnal variation of concentrations of C-reactive protein, serum amyloid A and insulin were reduced in GDM. Levels of coagulation factor VIII were lower in GDM compared with normal pregnancy, whereas no other differences were seen in coagulation and fibrinolysis markers. No significant associations were seen between NA and the studied parameters. In the study of postmenopausal women, moxonidine treatment was associated with favourable changes in the inflammatory profile, seen as a decrease in TNFα concentrations (increase in atenolol group) and preservation of adiponectin levels (decrease in atenolol group). In conclusion, our results did not support our hypotheses of increased SNS activity in GDM or a marked association between NA and inflammatory and coagulation markers. Reduced biological variation of HRV, insulin and inflammatory cytokines suggests disturbance of autonomic and hormonal regulatory mechanisms in GDM. This is a novel finding. Further understanding of the regulatory mechanisms could allow earlier detection of risk women and the possibility of prevention. In addition, our results support consideration of the SNS as one of the therapeutic targets in the battle against metabolic diseases, including T2D and CVD.
Resumo:
Lung cancer accounts for more cancer-related deaths than any other cancer. In Finland, five-year survival ranges from 8% to 13%. The main risk factor for lung cancer is long-term cigarette smoking, but its carcinogenesis requires several other factors. The aim of the present study was to 1) evaluate post-operative quality of life, 2) compare clinical outcomes between minimally invasive and conventional open surgery, 3) evaluate the role of oxidative stress in the carcinogenesis of non-small lung cancer (NSCLC), and 4) to identify and characterise targeted agents for therapeutic and diagnostic use in surgery. For study I, pneumonectomy patients replied to 15D quality of life and baseline dyspnea questionnaires. Study III involved a prospective quality of life assessment using the 15D questionnaire after lobectomy or bi-lobectomy. Study IV was a retrospective comparison of clinical outcomes between 212 patients treated with open thoracotomy and 116 patients who underwent a minimally invasive technique. Study II measured parameters of oxidative metabolism (myeloperoxidase activity, glutathione content and NADPH oxidase activity) and DNA adducts. Study V employed the phage display method and identified a core motif for homing peptides. This method served in cell-binding, cell-localisation, and biodistribution studies. Following both pneumonectomy and lobectomy, NSCLC patients showed significantly decreased long-term quality of life. No significant correlation was noted between post-operative quality of life and pre-operative pulmonary function tests. Women suffered more from increased dyspnea after pneumonectomy which was absent after lobectomy or bi-lobectomy. Patients treated with video-assisted thoracoscopy showed significantly decreased morbidity and shorter periods of hospitalization than did open surgery patients. This improvement was achieved even though the VATS patients were older and suffered more comorbid conditions and poorer pulmonary function. No significant differences in survival were noted between these two groups. An increase in NADPH oxidase activity was noted in tumour samples of both adenocarcinoma and squamous cell carcinoma. This increase was independent from myeloperoxidase activity. Elevated glutathione content was noted in tumour tissue, especially in adenocarcinoma. After panning the clinical tumour samples with the phage display method, an amino acid sequence of ARRPKLD, the Thx, was chosen for further analysis. This method proved selective of tumour tissue in both in vitro and in vivo cell-binding assay, and biodistribution showed tumour accumulation. Because of the significantly reduced quality of life following pneumonectomy, other operative strategies should be implemented as an alternative (e.g. sleeve-lobectomy). To treat this disease, implementation of a minimally invasive surgical technique is safe, and the results showed decreased morbidity and a shorter period of hospitalisation than with thoracotomy. This technique may facilitate operative treatment of elderly patients with comorbid conditions who might otherwise be considered inoperable. Simultaneous exposure to oxidative stress and altered redox states indicates the important role of oxidative stress in the pathogenesis and malignant transformation of NSCLC. The studies showed with great specificity and with favourable biodistribution that Thx peptide is specific to NSCLC tumours. Thx thus shows promise in imaging, targeted therapy, and monitoring of treatment response.
Resumo:
The problem of denoising damage indicator signals for improved operational health monitoring of systems is addressed by applying soft computing methods to design filters. Since measured data in operational settings is contaminated with noise and outliers, pattern recognition algorithms for fault detection and isolation can give false alarms. A direct approach to improving the fault detection and isolation is to remove noise and outliers from time series of measured data or damage indicators before performing fault detection and isolation. Many popular signal-processing approaches do not work well with damage indicator signals, which can contain sudden changes due to abrupt faults and non-Gaussian outliers. Signal-processing algorithms based on radial basis function (RBF) neural network and weighted recursive median (WRM) filters are explored for denoising simulated time series. The RBF neural network filter is developed using a K-means clustering algorithm and is much less computationally expensive to develop than feedforward neural networks trained using backpropagation. The nonlinear multimodal integer-programming problem of selecting optimal integer weights of the WRM filter is solved using genetic algorithm. Numerical results are obtained for helicopter rotor structural damage indicators based on simulated frequencies. Test signals consider low order polynomial growth of damage indicators with time to simulate gradual or incipient faults and step changes in the signal to simulate abrupt faults. Noise and outliers are added to the test signals. The WRM and RBF filters result in a noise reduction of 54 - 71 and 59 - 73% for the test signals considered in this study, respectively. Their performance is much better than the moving average FIR filter, which causes significant feature distortion and has poor outlier removal capabilities and shows the potential of soft computing methods for specific signal-processing applications. (C) 2005 Elsevier B. V. All rights reserved.
Therapeutic work with the present moment: A conversation analytical study of guidance into immediacy
Resumo:
Therapeutic work with the client’s present moment experience in existential therapy was studied by means of conversation analysis. Using publicly available video recordings of therapy sessions as data, an existential therapist’s practice of guiding a client into immediacy, or refocusing the talk on a client’s immediate experience, was described and compared with a therapist’s corresponding action in cognitive therapy. The study contributes to the description of interactional practice of existential therapy, and involves the first application of conversation analysis to a comparative study of psychotherapy process. The potential utility of this approach and the clinical and empirical implications of the present findings are discussed.