982 resultados para photoluminescence (PL)


Relevância:

60.00% 60.00%

Publicador:

Resumo:

Temperature-dependent bimodal size evolution of InAs quantum dots on vicinal GaAs(100) substrates grown by metalorganic chemical vapor deposition (MOCVD) is studied. An abnormal trend of the evolution on temperature is observed. With the increase of the growth temperature, while the density of the large dots decreases continually, that of the small dots first grows larger when temperature was below 520 degrees C, and then there is a sudden decrease at 535 degrees C. Photoluminescence (PL) studies show that QDs on vicinal substrates have a narrower PL line width, a longer emission wavelength and a larger PL intensity.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

High quality ZnO films have been successfully grown on Si(100) substrates by Metal-organic chemical vapor deposition (MOCVD) technique. The optimization of growth conditions (II-VI ratio, growth temperature, etc) and the effects of film thickness and thermal treatment on ZnO films' crystal quality, surface morphology and optical properties were investigated using X-ray diffraction (XRD), atomic force microscopy (AFM), and photoluminescence (PL) spectrum, respectively. The XRD patterns of the films grown at the optimized temperature (300 degrees C) show only a sharp peak at about 34.4 degrees corresponding to the (0002) peak of hexagonal ZnO, and the FWHM was lower than 0.4 degrees. We find that under the optimized growth conditions, the increase of the ZnO films' thickness cannot improve their structural and optical properties. We suggest that if the film's thickness exceeds an optimum value, the crystal quality will be degraded due to the large differences of lattice constant and thermal expansion coefficient between Si and ZnO. In PL analysis, samples all displayed only ultraviolet emission peaks and no observable deep-level emission, which indicated high-quality ZnO films obtained. Thermal treatments were performed in oxygen and nitrogen atmosphere, respectively. Through the analysis of PL spectra, we found that ZnO films annealing in oxygen have the strongest intensity and the low FWHM of 10.44 nm(106 meV) which is smaller than other reported values on ZnO films grown by MOCVD.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The effect of thermal annealing of InAs/GaAs quantum dots (QDs) with emission wavelength at 1.3 mu m have been investigated by photoluminescence (PL) and transmission electron microscopy (TEM measurements. There is a dramatic change in the A spectra when the annealing temperature is raised up to 800 degrees C: an accelerated blushifit of the main emission peak of QDs together with an inhomogeneous broadening of the linewidth. The TEM images shows that the lateral size of normal QDs decreases as the annealing temperature is increased, while the noncoherent islands increase their size and densit. A small fraction of the relative large QDs contain dislocations when the annealing temperature increases up to 800 degrees C. The latter leads to the strong decrease of the PL intensity.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Photoluminescence (PL) and absorption experiments were carried out to examine the fundamental band-gap of InN films grown on silicon substrates. A strong PL peak at 0.78 eV was observed at room temperature, which is much lower than the commonly accepted value of 1.9 eV. The integrated PL intensity was found to depend linearly on the excitation laser intensity over a wide intensity range. These results strongly suggest that the observed PL is related to the emission of the fundamental inter-band transitions of InN rather than to deep defect or impurity levels. Due to the effect of band-filling with increasing free electron concentration, the absorption edge shifts to higher energy. (c) 2006 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

High structural and optical quality 1.3 mu m GaInNAs/GaAs quantum well (QW) samples with 42.5% indium content were successfully grown by molecular beam epitaxy. The growth of well layers was monitored by reflection high-energy electron diffraction (RHEED). Room temperature photoluminescence (PL) peak intensity of the GaIn0.425NAs/GaAs (6 nm / 20 nm) 3QW is higher than, and the full width at half maximum (FWHM) is comparable to, that of In0.425GaAs/GaAs 3QW, indicating improved optical quality due to strain compensation effects by introducing N to the high indium content InGaAs epilayer. The measured (004) X-ray rocking curve shows clear satellite peaks and Pendellosung fringes, suggesting high film uniformity and smooth interfaces. The cross sectional TEM measurements further reveal that there are no structural defects in such high indium content QWs. (c) 2006 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Self-assembly Ge quantum dots (QD) on Si and Si/Ge mutli-quantum-wells (MQW) are grown by MBE. The island size and island density was investigated by atomics force microscopy. Ten-layer and twenty-layer MQW were selected for photodiode device fabrication. In photoluminescence (PL), a broad peak around 1.55-mu m wavelength was observed with higher peak intensity for the 10-layer MQW which had less defects than the 20-layer sample. Resonant cavity enhanced (RCE) photodiodes were fabricated by bonding on a SOI wafer. Selected responsivity at 1.55 mu m was successfully demonstrated. (c) 2005 Elsevier B.V. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

A novel in-plane bandgap energy controlling technique by ultra-low pressure (22 mbar) selective area growth (SAG) has been developed. To our knowledge, this is the lowest pressure condition during SAG process ever reported. In this work, high crystalline quality InGaAsP-InP MQWs with a photoluminescence (PL) full-width at half-maximum (FWHM) of less than 35meV are selectively grown on mask-patterned planar InP substrates by ultra-low pressure (22 mbar) metal-organic chemical vapor deposition (MOCVD). In order to study the uniformity of the MQWs grown in the selective area, novel tapered masks are designed and used. Through optimizing growth conditions, a wide wavelength shift of over 80 nm with a rather small mask width variation (0-30 mu m) is obtained. The mechanism of ultra-low pressure SAG is detailed by analyzing the effect of various mask designs and quantum well widths. This powerful technique is then applied to fabricate an electroabsorption-modulated laser (EML). Superior device characteristics are achieved, such as a low threshold current of 19mA and an output power of 7mW. (c) 2005 Elsevier B.V. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

We have investigated the hydride vapor-phase epitaxy growth of (10 (1) over bar(3) over bar)-oriented GaN thick films on patterned sapphire substrates (PSSs) (10 (1) over bar0). From characterization by atomic force microscopy, scanning electron microscopy, double-crystal X-ray diffraction, and photoluminescence (PL), it is determined that the crystalline and optical qualities of (10 (1) over bar(3) over bar) GaN epilayers grown on the cylindrical PSS are better than those on the flat sapphire. However, two main crystalline orientations (10 (1) over bar(3) over bar) and (11 (2) over bar2) dominate the GaN epilayers grown on the pyramidal PSS, demonstrating poor quality. After etching in the mixed acids, these (10 (1) over bar(3) over bar) GaN films are dotted with oblique pyramids, concurrently lining along the < 30 (3) over bar2 > direction, indicative of a typical N-polarity characteristic. Defect-related optical transitions of the (10 (1) over bar(3) over bar) GaN epilayers are identified and detailedly discussed in virtue of the temperature-dependent PL. In particular, an anomalous blueshift-redshift transition appears with an increase in temperature for the broad blue luminescence due to the thermal activation of the shallow level.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Tin disulfide (SnS2) nanocrystalline/amorphous blended phases were synthesized by mild chemical reaction. Both X-ray diffraction and transmission electron microscopy measurements demonstrate that the as-synthesized particles presented very small size, with a diameter of only a few nanometers. The photoluminescence (PL) spectrum suggests efficient splitting of photo-generated excitons in poly[2-methoxy-5-(3',7'-dimethyloctyloxy)-1,4-phenylenevinylene] (MDMO-PPV) and SnS2 hybrid films. Organic/inorganic hybrid solar cells comprising MDMO-PPV and SnS2 were prepared, giving photovoltage, photocurrent, fill factor and efficiency values of 0.702 V, 0.549 mA/cm(2), 0.385 and 0.148%, respectively, which suggests that this phase-blended inorganic semiconductor can also serve as a promising solar energy material. (C) 2009 Elsevier Ltd. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

InGaN/GaN multiple quantum well-based light-emitting diode (LED) nanopillar arrays were fabricated using Ni self-assembled nanodots as etching mask. The Ni nanodots were fabricated with a density of 6 x 10(8)-1.5 x 10(9) cm(-2) and a dimension of 100-250 nm with varying Ni thickness and annealing duration time. Then LED nanopillar arrays with diameter of approximately 250 nm and height of 700 nm were fabricated by inductively coupled plasma etching. In comparison to the as-grown LED sample an enhancement by a factor of four of photoluminescence (PL) intensity is achieved for the nanopillars and a blueshift as well as a decrease in full width at half maximum of the PL peak are also observed. The method of additional chemical etching was used to remove the etching-induced damage. Then nano-LED devices were further completed using a planarization approach to deposit p-type electrode on the tips of nanopillars. The current-voltage curves of both nanopillars and planar LED devices are measured for comparison.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

This paper studies the exciton-longitudinal-optical-phonon coupling in InGaN/GaN single quantum wells with various cap layer thicknesses by low temperature photoluminescence (PL) measurements With increasing cap layer thickness, the PL peak energy shifts to lower energy and the coupling strength between the exciton and longitudinal-optical (LO) phonon, described by Huang-Rhys factor, increases remarkably due to an enhancement of the internal electric field With increasing excitation intensity, the zero-phonon peak shows a blueshift and the Huang-Rhys factor decreases These results reveal that there is a large built-in electric field in the well layer and the exciton-LO phonon coupling is strongly affected by the thickness of the cap layer

Relevância:

60.00% 60.00%

Publicador:

Resumo:

A theoretical surface-state model of porous-silicon luminescence is proposed. The temperature effect on the PhotoLuminescence (PL) spectrum for pillar and spherical structures is considered, and it is found that the effect is dependent on the doping concentration, the excitation strength, and the shape and dimensions of the Si microstructure. The doping concentration has an effect on the PL intensity at high temperatures and the excitation strength has an effect on the PL intensity at low temperaturs. The variations of the PL intensity with temperature are different for the pillar and spherical structures. At low temperatures the PL intensity increases in the pillar structure, while in the spherical structure the PL intensity decreases as the temperature increases, at high temperatures the PL intensities have a maximum for both models. The temperature, at which the PL intensity reaches its maximum, depends on the doping concentration. The PL spectrum has a broader peak structure in the spherical structure than in the pillar structure. The theoretical results are in agreement with experimental results.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

HF etching followed by relatively low temperature (almost-equal-to 600-degrees-C) pretreatment is shown to provide a suitable substrate for the heteroepitaxial growth of GaAs on Si(100) by CBE using TEGa and AsH3 as sources. Rutherford backscattering (RBS), photoluminescence (PL), transmission electron microscopy (TEM), and Raman measurements show the low-defect nature of the GaAs epilayer.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Capacitance-voltage, photoluminescence (PL), and deep level transient spectroscopy techniques were used to investigate deep electron states in n-type Al-doped ZnS1-xTex epilayers grown by molecular beam epitaxy. The integrated intensity of the PL spectra obtained from Al-doped ZnS0.977Te0.023 is lower than that of undoped ZnS0.977Te0.023, indicating that some of the Al atoms form nonradiative deep traps. Deep level transient Fourier spectroscopy (DLTFS) spectra of the Al-doped ZnS1-xTex (x=0, 0.017, 0.04, and 0.046, respectively) epilayers reveal that Al doping leads to the formation of two electron traps 0.21 and 0.39 eV below the conduction band. DLTFS results suggest that in addition to the roles of Te as a component of the alloy as well as isoelectronic centers, Te is also involved in the formation of an electron trap, whose energy level with respect to the conduction band decreases as Te composition increases. Our results show that only a small fraction of Al atoms forms nonradiative deep defects, indicating clearly that Al is indeed a very good donor impurity for ZnS1-xTex epilayers in the range of Te composition being studied in this work. (C) 1997 American Institute of Physics. [S0021-8979(97)08421-1].

Relevância:

60.00% 60.00%

Publicador:

Resumo:

High-quality compressively strained In0.63Ga0.37As/InP quantum wells with different well widths (1-11 nm) have been grown coherently on InP substrates using a home-made gas source molecular beam epitaxy (GSMBE) system. The indium composition in the wells of the sample was determined by means of high-resolution X-ray diffraction and its computer simulation. it is found that the exciton transition energies determined by photoluminescence (PL) at 10 K are in good agreement with those calculated using a deformation potential model. Sharp and intense peaks for each well can be well resolved in the 10 K PL spectra. For wells narrower than 4 nm, the line width of the PL peaks are smaller than the theoretical values of the line-width broadening due to 1 hit interface fluctuation, showing that the interface fluctuation of our sample is within 1 ML. For wells of 7 and 9 nm, the PL peak widths are as low as 4.5 meV.