947 resultados para Wi-fi
Resumo:
Stochastic differential equations (SDEs) arise fi om physical systems where the parameters describing the system can only be estimated or are subject to noise. There has been much work done recently on developing numerical methods for solving SDEs. This paper will focus on stability issues and variable stepsize implementation techniques for numerically solving SDEs effectively.
Resumo:
Stochastic differential equations (SDEs) arise fi om physical systems where the parameters describing the system can only be estimated or are subject to noise. There has been much work done recently on developing numerical methods for solving SDEs. This paper will focus on stability issues and variable stepsize implementation techniques for numerically solving SDEs effectively. (C) 2000 Elsevier Science B.V. All rights reserved.
Resumo:
With the overwhelming increase in the amount of texts on the web, it is almost impossible for people to keep abreast of up-to-date information. Text mining is a process by which interesting information is derived from text through the discovery of patterns and trends. Text mining algorithms are used to guarantee the quality of extracted knowledge. However, the extracted patterns using text or data mining algorithms or methods leads to noisy patterns and inconsistency. Thus, different challenges arise, such as the question of how to understand these patterns, whether the model that has been used is suitable, and if all the patterns that have been extracted are relevant. Furthermore, the research raises the question of how to give a correct weight to the extracted knowledge. To address these issues, this paper presents a text post-processing method, which uses a pattern co-occurrence matrix to find the relation between extracted patterns in order to reduce noisy patterns. The main objective of this paper is not only reducing the number of closed sequential patterns, but also improving the performance of pattern mining as well. The experimental results on Reuters Corpus Volume 1 data collection and TREC filtering topics show that the proposed method is promising.
Resumo:
Finding and labelling semantic features patterns of documents in a large, spatial corpus is a challenging problem. Text documents have characteristics that make semantic labelling difficult; the rapidly increasing volume of online documents makes a bottleneck in finding meaningful textual patterns. Aiming to deal with these issues, we propose an unsupervised documnent labelling approach based on semantic content and feature patterns. A world ontology with extensive topic coverage is exploited to supply controlled, structured subjects for labelling. An algorithm is also introduced to reduce dimensionality based on the study of ontological structure. The proposed approach was promisingly evaluated by compared with typical machine learning methods including SVMs, Rocchio, and kNN.
Resumo:
BACKGROUND: A long length of stay (LOS) in the emergency department (ED) associated with overcrowding has been found to adversely affect the quality of ED care. The objective of this study is to determine whether patients who speak a language other than English at home have a longer LOS in EDs compared to those whose speak only English at home. METHODS: A secondary data analysis of a Queensland state-wide hospital EDs dataset (Emergency Department Information System) was conducted for the period, 1 January 2008 to 31 December 2010. RESULTS: The interpreter requirement was the highest among Vietnamese speakers (23.1%) followed by Chinese (19.8%) and Arabic speakers (18.7%). There were significant differences in the distributions of the departure statuses among the language groups (Chi-squared=3236.88, P<0.001). Compared with English speakers, the Beta coeffi cient for the LOS in the EDs measured in minutes was among Vietnamese, 26.3 (95%CI: 22.1–30.5); Arabic, 10.3 (95%CI: 7.3–13.2); Spanish, 9.4 (95%CI: 7.1–11.7); Chinese, 8.6 (95%CI: 2.6–14.6); Hindi, 4.0 (95%CI: 2.2–5.7); Italian, 3.5 (95%CI: 1.6–5.4); and German, 2.7 (95%CI: 1.0–4.4). The fi nal regression model explained 17% of the variability in LOS. CONCLUSION: There is a close relationship between the language spoken at home and the LOS at EDs, indicating that language could be an important predictor of prolonged LOS in EDs and improving language services might reduce LOS and ease overcrowding in EDs in Queensland's public hospitals.
Resumo:
Bayesian networks (BNs) provide a statistical modelling framework which is ideally suited for modelling the many factors and components of complex problems such as healthcare-acquired infections. The methicillin-resistant Staphylococcus aureus (MRSA) organism is particularly troublesome since it is resistant to standard treatments for Staph infections. Overcrowding and understa�ng are believed to increase infection transmission rates and also to inhibit the effectiveness of disease control measures. Clearly the mechanisms behind MRSA transmission and containment are very complicated and control strategies may only be e�ective when used in combination. BNs are growing in popularity in general and in medical sciences in particular. A recent Current Content search of the number of published BN journal articles showed a fi�ve fold increase in general and a six fold increase in medical and veterinary science from 2000 to 2009. This chapter introduces the reader to Bayesian network (BN) modelling and an iterative modelling approach to build and test the BN created to investigate the possible role of high bed occupancy on transmission of MRSA while simultaneously taking into account other risk factors.
Resumo:
In a people-to-people matching systems, filtering is widely applied to find the most suitable matches. The results returned are either too many or only a few when the search is generic or specific respectively. The use of a sophisticated recommendation approach becomes necessary. Traditionally, the object of recommendation is the item which is inanimate. In online dating systems, reciprocal recommendation is required to suggest a partner only when the user and the recommended candidate both are satisfied. In this paper, an innovative reciprocal collaborative method is developed based on the idea of similarity and common neighbors, utilizing the information of relevance feedback and feature importance. Extensive experiments are carried out using data gathered from a real online dating service. Compared to benchmarking methods, our results show the proposed method can achieve noticeable better performance.
Resumo:
A new community and communication type of social networks - online dating - are gaining momentum. With many people joining in the dating network, users become overwhelmed by choices for an ideal partner. A solution to this problem is providing users with partners recommendation based on their interests and activities. Traditional recommendation methods ignore the users’ needs and provide recommendations equally to all users. In this paper, we propose a recommendation approach that employs different recommendation strategies to different groups of members. A segmentation method using the Gaussian Mixture Model (GMM) is proposed to customize users’ needs. Then a targeted recommendation strategy is applied to each identified segment. Empirical results show that the proposed approach outperforms several existing recommendation methods.
Resumo:
The rapid development of the World Wide Web has created massive information leading to the information overload problem. Under this circumstance, personalization techniques have been brought out to help users in finding content which meet their personalized interests or needs out of massively increasing information. User profiling techniques have performed the core role in this research. Traditionally, most user profiling techniques create user representations in a static way. However, changes of user interests may occur with time in real world applications. In this research we develop algorithms for mining user interests by integrating time decay mechanisms into topic-based user interest profiling. Time forgetting functions will be integrated into the calculation of topic interest measurements on in-depth level. The experimental study shows that, considering temporal effects of user interests by integrating time forgetting mechanisms shows better performance of recommendation.
Resumo:
Most recommender systems attempt to use collaborative filtering, content-based filtering or hybrid approach to recommend items to new users. Collaborative filtering recommends items to new users based on their similar neighbours, and content-based filtering approach tries to recommend items that are similar to new users' profiles. The fundamental issues include how to profile new users, and how to deal with the over-specialization in content-based recommender systems. Indeed, the terms used to describe items can be formed as a concept hierarchy. Therefore, we aim to describe user profiles or information needs by using concepts vectors. This paper presents a new method to acquire user information needs, which allows new users to describe their preferences on a concept hierarchy rather than rating items. It also develops a new ranking function to recommend items to new users based on their information needs. The proposed approach is evaluated on Amazon book datasets. The experimental results demonstrate that the proposed approach can largely improve the effectiveness of recommender systems.
Resumo:
Different reputation models are used in the web in order to generate reputation values for products using uses' review data. Most of the current reputation models use review ratings and neglect users' textual reviews, because it is more difficult to process. However, we argue that the overall reputation score for an item does not reflect the actual reputation for all of its features. And that's why the use of users' textual reviews is necessary. In our work we introduce a new reputation model that defines a new aggregation method for users' extracted opinions about products' features from users' text. Our model uses features ontology in order to define general features and sub-features of a product. It also reflects the frequencies of positive and negative opinions. We provide a case study to show how our results compare with other reputation models.
Resumo:
Textual document set has become an important and rapidly growing information source in the web. Text classification is one of the crucial technologies for information organisation and management. Text classification has become more and more important and attracted wide attention of researchers from different research fields. In this paper, many feature selection methods, the implement algorithms and applications of text classification are introduced firstly. However, because there are much noise in the knowledge extracted by current data-mining techniques for text classification, it leads to much uncertainty in the process of text classification which is produced from both the knowledge extraction and knowledge usage, therefore, more innovative techniques and methods are needed to improve the performance of text classification. It has been a critical step with great challenge to further improve the process of knowledge extraction and effectively utilization of the extracted knowledge. Rough Set decision making approach is proposed to use Rough Set decision techniques to more precisely classify the textual documents which are difficult to separate by the classic text classification methods. The purpose of this paper is to give an overview of existing text classification technologies, to demonstrate the Rough Set concepts and the decision making approach based on Rough Set theory for building more reliable and effective text classification framework with higher precision, to set up an innovative evaluation metric named CEI which is very effective for the performance assessment of the similar research, and to propose a promising research direction for addressing the challenging problems in text classification, text mining and other relative fields.
Resumo:
The Australian Curriculum: English (AC:E) is being implemented in Queensland and asks teachers and curriculum designers to incorporate the cross curriculum priority of Sustainability. This paper examines some texts suitable for inclusion in classroom study and suggests some companion texts that may be studied alongside them, including online resources by the ABC and those developed online for the Australian Curriculum. We also suggest some formative and summative assessment possibilities for responding to the selected works in this guide. We have endeavoured to investigate literature that enable students to explore and produce text types across the three AC:E categories: persuasive, imaginative and informative. The selected texts cover traditional novels, novellas, Sci-fi and speculative fiction, non-fiction, documentary, feature film and animation. Some of the texts reviewed here also cover the other cross curriculum priorities including texts by Aboriginal and Torres Strait Islander writers and some which also include Asian representations. We have also indicated which of the AC:E the general capabilities are addressed in each text.
Resumo:
It has been almost fi ve years since I fi rst published the article entitled “Much Ado About Staining” in Review of Optometry, which explored what we really knew in 2006 about the relationship between “corneal staining” and contact lens multipurpose solutions (MPS). This was published just prior to the controversial “staining grid.” While the Grid showed MPS-associated hyperfl uorescence under the slitlamp at two hours, it did not explain the “what” or “why” behind it; even so, many proponents of the Grid continue to suggest that it shows us which solution/lens combinations are “biocompatible” and which are not. New evidence suggests that the preservative-associated transient hyperfl uorescence (or PATH) observed at two hours after lens insertion is a benign phenomenon due to an interaction between fl uorescein, MPS preservatives, and corneal cell membranes. The misinterpretation of PATH as “real” corneal staining, like that observed in pathological conditions, may be due in part to the fact that there is not a lot of teaching regarding the true properties of fl uorescein and what is actually occurring when we see either PATH or corneal staining. To discuss the science of fl uorescein, corneal staining, and PATH, I have asked some of the preeminent research experts in the study of fl uorescence spectroscopy and corneal staining from around the world to share their new research and personal opinions on these topics...
Resumo:
The Australian masonry standard allows either prism tests or correction factors based on the block height and mortar thickness to evaluate masonry compressive strength. The correction factor helps the taller units with conventional 10 mm mortar being not disadvantaged due to size effect. In recent times, 2-4 mm thick, high-adhesive mortars and H blocks with only the mid-web shell are used in masonry construction. H blocks and thinner and higher adhesive mortars have renewed interest of the compression behaviour of hollow concrete masonry and hence is revisited in this paper. This paper presents an experimental study carried out to examine the effects of the thickness of mortar joints, the type of mortar adhesives and the presence of web shells in the hollow concrete masonry prisms under axial compression. A non-contact digital image correlation technique was used to measure the deformation of the prisms and was found adequate for the determination of strain fi eld of the loaded face shells subjected to axial compression. It is found that the absence of end web shells lowers the compressive strength and stiffness of the prisms and the thinner and higher adhesive mortars increase the compressive strength and stiffness, while lowering the Poisson's ratio. © Institution of Engineers Australia, 2013.