1000 resultados para Valla, Lorenzo, 1406-1457
Resumo:
Linear and nonlinear optical properties of silicon suboxide SiOx films deposited by plasma-enhanced chemical-vapor deposition have been studied for different Si excesses up to 24¿at.¿%. The layers have been fully characterized with respect to their atomic composition and the structure of the Si precipitates. Linear refractive index and extinction coefficient have been determined in the whole visible range, enabling to estimate the optical bandgap as a function of the Si nanocrystal size. Nonlinear optical properties have been evaluated by the z-scan technique for two different excitations: at 0.80¿eV in the nanosecond regime and at 1.50¿eV in the femtosecond regime. Under nanosecond excitation conditions, the nonlinear process is ruled by thermal effects, showing large values of both nonlinear refractive index (n2 ~ ¿10¿8¿cm2/W) and nonlinear absorption coefficient (ß ~ 10¿6¿cm/W). Under femtosecond excitation conditions, a smaller nonlinear refractive index is found (n2 ~ 10¿12¿cm2/W), typical of nonlinearities arising from electronic response. The contribution per nanocrystal to the electronic third-order nonlinear susceptibility increases as the size of the Si nanoparticles is reduced, due to the appearance of electronic transitions between discrete levels induced by quantum confinement.
Resumo:
This paper reports the microstructural analysis of S-rich CuIn(S,Se)2 layers produced by electrodeposition of CuInSe2 precursors and annealing under sulfurizing conditions as a function of the temperature of sulfurization. The characterization of the layers by Raman scattering, scanning electron microscopy, Auger electron spectroscopy, and XRD techniques has allowed observation of the strong dependence of the crystalline quality of these layers on the sulfurization temperature: Higher sulfurization temperatures lead to films with improved crystallinity, larger average grain size, and lower density of structural defects. However, it also favors the formation of a thicker MoS2 interphase layer between the CuInS2 absorber layer and the Mo back contact. Decreasing the temperature of sulfurization leads to a significant decrease in the thickness of this intermediate layer and is also accompanied by significant changes in the composition of the interface region between the absorber and the MoS2 layer, which becomes Cu rich. The characterization of devices fabricated with these absorbers corroborates the significant impact of all these features on device parameters as the open circuit voltage and fill factor that determine the efficiency of the solar cells.
Resumo:
The microstructure of CuInS2-(CIS2) polycrystalline films deposited onto Mo-coated glass has been analyzed by Raman scattering, Auger electron spectroscopy (AES), transmission electron microscopy, and x-ray diffraction techniques. Samples were obtained by a coevaporation procedure that allows different Cu-to-In composition ratios (from Cu-rich to Cu-poor films). Films were grown at different temperatures between 370 and 520-°C. The combination of micro-Raman and AES techniques onto Ar+-sputtered samples has allowed us to identify the main secondary phases from Cu-poor films such as CuIn5S8 (at the central region of the layer) and MoS2 (at the CIS2/Mo interface). For Cu-rich films, secondary phases are CuS at the surface of as-grown layers and MoS2 at the CIS2/Mo interface. The lower intensity of the MoS2 modes from the Raman spectra measured at these samples suggests excess Cu to inhibit MoS2 interface formation. Decreasing the temperature of deposition to 420-°C leads to an inhibition in observing these secondary phases. This inhibition is also accompanied by a significant broadening and blueshift of the main A1 Raman mode from CIS2, as well as by an increase in the contribution of an additional mode at about 305 cm-1. The experimental data suggest that these effects are related to a decrease in structural quality of the CIS2 films obtained under low-temperature deposition conditions, which are likely connected to the inhibition in the measured spectra of secondary-phase vibrational modes.
Resumo:
High quantum efficiency erbium doped silicon nanocluster (Si-NC:Er) light emitting diodes (LEDs) were grown by low-pressure chemical vapor deposition (LPCVD) in a complementary metal-oxide-semiconductor (CMOS) line. Erbium (Er) excitation mechanisms under direct current (DC) and bipolar pulsed electrical injection were studied in a broad range of excitation voltages and frequencies. Under DC excitation, Fowler-Nordheim tunneling of electrons is mediated by Er-related trap states and electroluminescence originates from impact excitation of Er ions. When the bipolar pulsed electrical injection is used, the electron transport and Er excitation mechanism change. Sequential injection of electrons and holes into silicon nanoclusters takes place and nonradiative energy transfer to Er ions is observed. This mechanism occurs in a range of lower driving voltages than those observed in DC and injection frequencies higher than the Er emission rate.
Resumo:
The sensitizing action of amorphous silicon nanoclusters on erbium ions in thin silica films has been studied under low-energy (long wavelength) optical excitation. Profound differences in fast visible and infrared emission dynamics have been found with respect to the high-energy (shortwavelength) case. These findings point out to a strong dependence of the energy transfer process on the optical excitation energy. Total inhibition of energy transfer to erbium states higher than thefirst excited state (4I13/2) has been demonstrated for excitation energy below 1.82 eV (excitation wavelength longer than 680 nm). Direct excitation of erbium ions to the first excited state (4I13/2)has been confirmed to be the dominant energy transfer mechanism over the whole spectral range of optical excitation used (540 nm¿680 nm).
Resumo:
We present a electroluminescence (EL) study of the Si-rich silicon oxide (SRSO) LEDs with and without Er3+ ions under different polarization schemes: direct current (DC) and pulsed voltage (PV). The power efficiency of the devices and their main optical limitations are presented. We show that under PV polarization scheme, the devices achieve one order of magnitude superior performance in comparison with DC. Time-resolved measurements have shown that this enhancement is met only for active layers in which annealing temperature is high enough (>1000 ◦C) for silicon nanocrystal (Si-nc) formation. Modeling of the system with rate equations has been done and excitation cross-sections for both Si-nc and Er3+ ions have been extracted.
Resumo:
Rib-loaded waveguides containing Er3+-coupled Si nanoclusters (Si-nc) have been produced to observe optical gain at 1535 nm. The presence ofSi-nc strongly improves the efficiency ofEr 3+ excitation but may introduce optical loss mechanisms, such as Mie scattering and confined carrier absorption. Losses strongly affect the possibility of obtaining positive optical gain. Si-nc-related losses have been minimized to 1 dB/cm by lowering the annealing time ofthe Er3+-doped silicon-rich oxide deposited by reactive magnetron cosputtering. Photoluminescence (PL) and lifetime measurements show that all Er3+ ions are optically active while those that can be excited at high pump rates via Si-nc are only a small percentage. Er3+ absorption cross section is found comparable to that ofEr 3+ in SiO 2.However, dependence on the effective refractive index has been found. In pump-probe measurements, it is shown how the detrimental role ofconfined carrier absorption can be attenuated by reducing the annealing time. A maximum signal enhancement ofabout 1.34 at 1535 nm was measured.
Resumo:
Silicon nanocrystals (Si-nc) is an enabling material for silicon photonics, which is no longer an emerging field of research but an available technology with the first commercial products available on the market. In this paper, properties and applications of Si-nc in silicon photonics are reviewed. After a brief history of silicon photonics, the limitations of silicon as a light emitter are discussed and the strategies to overcome them are briefly treated, with particular attention to the recent achievements. Emphasis is given to the visible optical gain properties of Si-nc and to its sensitization effect on Er ions to achieve infrared light amplification. The state of the art of Si-nc applied in a few photonic components is reviewed and discussed. The possibility to exploit Si-nc for solar cells is also presented. in addition, nonlinear optical effects, which enable fast all-optical switches, are described.
Resumo:
We report a spectroscopic study about the energy transfer mechanism among silicon nanoparticles (Si-np), both amorphous and crystalline, and Er ions in a silicon dioxide matrix. From infrared spectroscopic analysis, we have determined that the physics of the transfer mechanism does not depend on the Si-np nature, finding a fast (< 200 ns) energy transfer in both cases, while the amorphous nanoclusters reveal a larger transfer efficiency than the nanocrystals. Moreover, the detailed spectroscopic results in the visible range here reported are essential to understand the physics behind the sensitization effect, whose knowledge assumes a crucial role to enhance the transfer rate and possibly employing the material in optical amplifier devices. Joining the experimental data, performed with pulsed and continuous-wave excitation, we develop a model in which the internal intraband recombination within Si-np is competitive with the transfer process via an Auger electron"recycling" effect. Posing a different light on some detrimental mechanism such as Auger processes, our findings clearly recast the role of Si-np in the sensitization scheme, where they are able to excite very efficiently ions in close proximity to their surface. (C) 2010 American Institute of Physics.
Resumo:
We investigated the association between diet and head and neck cancer (HNC) risk using data from the International Head and Neck Cancer Epidemiology (INHANCE) consortium. The INHANCE pooled data included 22 case-control studies with 14,520 cases and 22,737 controls. Center-specific quartiles among the controls were used for food groups, and frequencies per week were used for single food items. A dietary pattern score combining high fruit and vegetable intake and low red meat intake was created. Odds ratios (OR) and 95% confidence intervals (CI) for the dietary items on the risk of HNC were estimated with a two-stage random-effects logistic regression model. An inverse association was observed for higher-frequency intake of fruit (4th vs. 1st quartile OR = 0.52, 95% CI = 0.43-0.62, p (trend) < 0.01) and vegetables (OR = 0.66, 95% CI = 0.49-0.90, p (trend) = 0.01). Intake of red meat (OR = 1.40, 95% CI = 1.13-1.74, p p (trend) < 0.01) was positively associated with HNC risk. Higher dietary pattern scores, reflecting high fruit/vegetable and low red meat intake, were associated with reduced HNC risk (per score increment OR = 0.90, 95% CI = 0.84-0.97).