627 resultados para Social BI, Social Business Intelligence, Sentiment Analysis, Opinion Mining.
Resumo:
Part 2: Behaviour and Coordination
Resumo:
El presente proyecto:Inteligencia de negocios, aplicando la metodología RFM a las cuentas de los socios de la COAC Jardín Azuayo, se desarrolla sobre la necesidad de la institución de contar con herramientas eficientes y eficaces para la toma de decisiones y conocimiento del socio. Primero, se determina la importancia de construir una herramienta de Inteligencia de Negocios dentro de Jardín Azuayo que permita obtener información clara y concisa en tiempo real para la toma de decisiones. Segundo, se continúa con el desarrollo de metodologías para la gestión del valor del socio a través del conocimiento de sus necesidades analizando la información histórica de su última transacción realizada, la frecuencia con la que acude para acceder a los servicios que ofrece la Cooperativa y el monto promedio por transacción. Finalmente, al combinar la herramienta de Inteligencia de Negocios para la obtención de información y la aplicación de metodologías para el conocimiento del socio, se ha podido plantear dos estrategias básicas para la afianzar la fidelización del socio con la Cooperativa.
Resumo:
RESUMO - O Huanglongbing (HLB) é uma doença incurável que afeta plantas de citros em todo o país. Como o Brasil é um dos maiores produtores de citros do mundo, essa doença pode causar um grande impacto econômico na agricultura brasileira. Visando contribuir para novas estratégias de controle da doença, estão sendo realizados estudos focados na modelagem baseada no indivíduo (MBI) para avaliar a propagação espaço-temporal da doença em áreas de plantio com a presença de um novo hospedeiro alternativo mais atrativo. Este trabalho tem como objetivo desenvolver a estrutura computacional de um MBI, utilizando o software R e o pacote Shiny que possibilita executar as simulações via web, a partir de premissas e estudos biológicos prévios da doença. As simulações iniciais indicam que a estrutura computacional concebida possibilita uma melhor visualização da progressão da doença, bem como facilita o teste de diferentes geometrias de plantio envolvendo os hospedeiros principal e alternativo.
Resumo:
With the advent of Service Oriented Architecture, Web Services have gained tremendous popularity. Due to the availability of a large number of Web services, finding an appropriate Web service according to the requirement of the user is a challenge. This warrants the need to establish an effective and reliable process of Web service discovery. A considerable body of research has emerged to develop methods to improve the accuracy of Web service discovery to match the best service. The process of Web service discovery results in suggesting many individual services that partially fulfil the user’s interest. By considering the semantic relationships of words used in describing the services as well as the use of input and output parameters can lead to accurate Web service discovery. Appropriate linking of individual matched services should fully satisfy the requirements which the user is looking for. This research proposes to integrate a semantic model and a data mining technique to enhance the accuracy of Web service discovery. A novel three-phase Web service discovery methodology has been proposed. The first phase performs match-making to find semantically similar Web services for a user query. In order to perform semantic analysis on the content present in the Web service description language document, the support-based latent semantic kernel is constructed using an innovative concept of binning and merging on the large quantity of text documents covering diverse areas of domain of knowledge. The use of a generic latent semantic kernel constructed with a large number of terms helps to find the hidden meaning of the query terms which otherwise could not be found. Sometimes a single Web service is unable to fully satisfy the requirement of the user. In such cases, a composition of multiple inter-related Web services is presented to the user. The task of checking the possibility of linking multiple Web services is done in the second phase. Once the feasibility of linking Web services is checked, the objective is to provide the user with the best composition of Web services. In the link analysis phase, the Web services are modelled as nodes of a graph and an allpair shortest-path algorithm is applied to find the optimum path at the minimum cost for traversal. The third phase which is the system integration, integrates the results from the preceding two phases by using an original fusion algorithm in the fusion engine. Finally, the recommendation engine which is an integral part of the system integration phase makes the final recommendations including individual and composite Web services to the user. In order to evaluate the performance of the proposed method, extensive experimentation has been performed. Results of the proposed support-based semantic kernel method of Web service discovery are compared with the results of the standard keyword-based information-retrieval method and a clustering-based machine-learning method of Web service discovery. The proposed method outperforms both information-retrieval and machine-learning based methods. Experimental results and statistical analysis also show that the best Web services compositions are obtained by considering 10 to 15 Web services that are found in phase-I for linking. Empirical results also ascertain that the fusion engine boosts the accuracy of Web service discovery by combining the inputs from both the semantic analysis (phase-I) and the link analysis (phase-II) in a systematic fashion. Overall, the accuracy of Web service discovery with the proposed method shows a significant improvement over traditional discovery methods.
Resumo:
Abstract With the phenomenal growth of electronic data and information, there are many demands for the development of efficient and effective systems (tools) to perform the issue of data mining tasks on multidimensional databases. Association rules describe associations between items in the same transactions (intra) or in different transactions (inter). Association mining attempts to find interesting or useful association rules in databases: this is the crucial issue for the application of data mining in the real world. Association mining can be used in many application areas, such as the discovery of associations between customers’ locations and shopping behaviours in market basket analysis. Association mining includes two phases. The first phase, called pattern mining, is the discovery of frequent patterns. The second phase, called rule generation, is the discovery of interesting and useful association rules in the discovered patterns. The first phase, however, often takes a long time to find all frequent patterns; these also include much noise. The second phase is also a time consuming activity that can generate many redundant rules. To improve the quality of association mining in databases, this thesis provides an alternative technique, granule-based association mining, for knowledge discovery in databases, where a granule refers to a predicate that describes common features of a group of transactions. The new technique first transfers transaction databases into basic decision tables, then uses multi-tier structures to integrate pattern mining and rule generation in one phase for both intra and inter transaction association rule mining. To evaluate the proposed new technique, this research defines the concept of meaningless rules by considering the co-relations between data-dimensions for intratransaction-association rule mining. It also uses precision to evaluate the effectiveness of intertransaction association rules. The experimental results show that the proposed technique is promising.
Resumo:
Item folksonomy or tag information is a kind of typical and prevalent web 2.0 information. Item folksonmy contains rich opinion information of users on item classifications and descriptions. It can be used as another important information source to conduct opinion mining. On the other hand, each item is associated with taxonomy information that reflects the viewpoints of experts. In this paper, we propose to mine for users’ opinions on items based on item taxonomy developed by experts and folksonomy contributed by users. In addition, we explore how to make personalized item recommendations based on users’ opinions. The experiments conducted on real word datasets collected from Amazon.com and CiteULike demonstrated the effectiveness of the proposed approaches.
Resumo:
News blog hot topics are important for the information recommendation service and marketing. However, information overload and personalized management make the information arrangement more difficult. Moreover, what influences the formation and development of blog hot topics is seldom paid attention to. In order to correctly detect news blog hot topics, the paper first analyzes the development of topics in a new perspective based on W2T (Wisdom Web of Things) methodology. Namely, the characteristics of blog users, context of topic propagation and information granularity are unified to analyze the related problems. Some factors such as the user behavior pattern, network opinion and opinion leader are subsequently identified to be important for the development of topics. Then the topic model based on the view of event reports is constructed. At last, hot topics are identified by the duration, topic novelty, degree of topic growth and degree of user attention. The experimental results show that the proposed method is feasible and effective.
Resumo:
In recent years, the Web 2.0 has provided considerable facilities for people to create, share and exchange information and ideas. Upon this, the user generated content, such as reviews, has exploded. Such data provide a rich source to exploit in order to identify the information associated with specific reviewed items. Opinion mining has been widely used to identify the significant features of items (e.g., cameras) based upon user reviews. Feature extraction is the most critical step to identify useful information from texts. Most existing approaches only find individual features about a product without revealing the structural relationships between the features which usually exist. In this paper, we propose an approach to extract features and feature relationships, represented as a tree structure called feature taxonomy, based on frequent patterns and associations between patterns derived from user reviews. The generated feature taxonomy profiles the product at multiple levels and provides more detailed information about the product. Our experiment results based on some popularly used review datasets show that our proposed approach is able to capture the product features and relations effectively.
Resumo:
As of today, opinion mining has been widely used to iden- tify the strength and weakness of products (e.g., cameras) or services (e.g., services in medical clinics or hospitals) based upon people's feed- back such as user reviews. Feature extraction is a crucial step for opinion mining which has been used to collect useful information from user reviews. Most existing approaches only find individual features of a product without the structural relationships between the features which usually exists. In this paper, we propose an approach to extract features and feature relationship, represented as tree structure called a feature hi- erarchy, based on frequent patterns and associations between patterns derived from user reviews. The generated feature hierarchy profiles the product at multiple levels and provides more detailed information about the product. Our experiment results based on some popularly used review datasets show that the proposed feature extraction approach can identify more correct features than the baseline model. Even though the datasets used in the experiment are about cameras, our work can be ap- plied to generate features about a service such as the services in hospitals or clinics.
Resumo:
Joint ventures are formed and dissolved regularly in the mining industry. What impact do such changes have on the viability of mineral exploration projects? The Australian Centre for Entrepreneurship Research (ACE) has taken 9 years' worth of data (2002-2011) on 1,025 joint ventures in the Australasian mining industry and studied trends in fomentation, dissolution, and reconfiguration and how they impact project outcomes. This research is generously sponsored by the Queensland Exploration Council (QEC) and the Australian Research Council (ARC).
Resumo:
User generated information such as product reviews have been booming due to the advent of web 2.0. In particular, rich information associated with reviewed products has been buried in such big data. In order to facilitate identifying useful information from product (e.g., cameras) reviews, opinion mining has been proposed and widely used in recent years. In detail, as the most critical step of opinion mining, feature extraction aims to extract significant product features from review texts. However, most existing approaches only find individual features rather than identifying the hierarchical relationships between the product features. In this paper, we propose an approach which finds both features and feature relationships, structured as a feature hierarchy which is referred to as feature taxonomy in the remainder of the paper. Specifically, by making use of frequent patterns and association rules, we construct the feature taxonomy to profile the product at multiple levels instead of single level, which provides more detailed information about the product. The experiment which has been conducted based upon some real world review datasets shows that our proposed method is capable of identifying product features and relations effectively.
Resumo:
Esta dissertação apresenta a estruturação de um sistema para indexação e visualização de depoimentos de história oral em vídeo. A partir do levantamento de um referencial teórico referente à indexação, o sistema resultou em um protótipo funcional de alta fidelidade. O conteúdo para a realização deste foi obtido pela indexação de 12 depoimentos coletados pela equipe do Museu da Pessoa durante o projeto Memórias da Vila Madalena, em São Paulo (ago/2012). Acervos de História Oral como o Museu da Pessoa, o Museu da Imagem e do Som ou o Centro de Pesquisa e Documentação de História Contemporânea do Brasil / CPDOC da Fundação Getúlio Vargas, reúnem milhares de horas de depoimentos em áudio e vídeo. De uma forma geral, esses depoimentos são longas entrevistas individuais, onde diversos assuntos são abordados; o que dificulta sua análise, síntese e consequentemente, sua recuperação. A transcrição dos depoimentos permite a realização de buscas textuais para acessar assuntos específicos nas longas entrevistas. Por isso, podemos dizer que as transcrições são a principal fonte de consulta dos pesquisadores de história oral, deixando a fonte primária (o vídeo) para um eventual segundo momento da pesquisa. A presente proposta visa ampliar a recuperação das fontes primárias a partir da indexação de segmentos de vídeo, criando pontos de acesso imediato para trechos relevantes das entrevistas. Nessa abordagem, os indexadores (termos, tags ou anotações) não são associados ao vídeo completo, mas a pontos de entrada e saída (timecodes) que definem trechos específicos no vídeo. As tags combinadas com os timecodes criam novos desafios e possibilidades para indexação e navegação através de arquivos de vídeo. O sistema aqui estruturado integra conceitos e técnicas de áreas aparentemente desconectadas: metodologias de indexação, construção de taxonomias, folksonomias, visualização de dados e design de interação são integrados em um processo unificado que vai desde a coleta e indexação dos depoimentos até sua visualização e interação.
Resumo:
La optimización de sistemas y modelos se ha convertido en uno de los factores más importantes a la hora de buscar la mayor eficiencia de un proceso. Este concepto no es ajeno al transporte escolar, ambiente que cambia constantemente al ritmo de las necesidades de sus clientes, y que responde ante una fuerte responsabilidad frente a sus usuarios, los niños que hacen uso del servicio, en cuanto al cumplimiento de tiempos y seguridad, mientras busca constantemente la reducción de costos. Este proyecto expone las problemáticas presentadas en The English School en esta área y propone un modelo de optimización simple que permitirá notables mejoras en términos de tiempos y costos, de tal forma que genere beneficios para la institución en términos financieros y de satisfacción al cliente. Por medio de la implementación de este modelo será posible identificar errores comunes del proceso, se identificarán soluciones prácticas de fácil aplicación en el manejo del transporte y se presentarán los resultados obtenidos en la muestra utilizada para desarrollar el proyecto.
Resumo:
Aircraft Maintenance, Repair and Overhaul (MRO) feedback commonly includes an engineer’s complex text-based inspection report. Capturing and normalizing the content of these textual descriptions is vital to cost and quality benchmarking, and provides information to facilitate continuous improvement of MRO process and analytics. As data analysis and mining tools requires highly normalized data, raw textual data is inadequate. This paper offers a textual-mining solution to efficiently analyse bulk textual feedback data. Despite replacement of the same parts and/or sub-parts, the actual service cost for the same repair is often distinctly different from similar previously jobs. Regular expression algorithms were incorporated with an aircraft MRO glossary dictionary in order to help provide additional information concerning the reason for cost variation. Professional terms and conventions were included within the dictionary to avoid ambiguity and improve the outcome of the result. Testing results show that most descriptive inspection reports can be appropriately interpreted, allowing extraction of highly normalized data. This additional normalized data strongly supports data analysis and data mining, whilst also increasing the accuracy of future quotation costing. This solution has been effectively used by a large aircraft MRO agency with positive results.