996 resultados para Quantitative stability
Resumo:
Gene-on-gene regulations are key components of every living organism. Dynamical abstract models of genetic regulatory networks help explain the genome's evolvability and robustness. These properties can be attributed to the structural topology of the graph formed by genes, as vertices, and regulatory interactions, as edges. Moreover, the actual gene interaction of each gene is believed to play a key role in the stability of the structure. With advances in biology, some effort was deployed to develop update functions in Boolean models that include recent knowledge. We combine real-life gene interaction networks with novel update functions in a Boolean model. We use two sub-networks of biological organisms, the yeast cell-cycle and the mouse embryonic stem cell, as topological support for our system. On these structures, we substitute the original random update functions by a novel threshold-based dynamic function in which the promoting and repressing effect of each interaction is considered. We use a third real-life regulatory network, along with its inferred Boolean update functions to validate the proposed update function. Results of this validation hint to increased biological plausibility of the threshold-based function. To investigate the dynamical behavior of this new model, we visualized the phase transition between order and chaos into the critical regime using Derrida plots. We complement the qualitative nature of Derrida plots with an alternative measure, the criticality distance, that also allows to discriminate between regimes in a quantitative way. Simulation on both real-life genetic regulatory networks show that there exists a set of parameters that allows the systems to operate in the critical region. This new model includes experimentally derived biological information and recent discoveries, which makes it potentially useful to guide experimental research. The update function confers additional realism to the model, while reducing the complexity and solution space, thus making it easier to investigate.
Resumo:
Vegeu el resum a l'inici del document de l'arxiu adjunt
Resumo:
In this study, we quantitatively investigated the expression of beta-site amyloid precursor protein cleaving enzyme (BACE) in the entorhinohippocampal and frontal cortex of Alzheimer's disease (AD) and old control subjects. The semiquantitative estimation indicated that the intensity of BACE overall immunoreactivity did not differ significantly between AD and controls, but that a significantly stronger staining was observed in the hippocampal regions CA3-4 compared to other regions in both AD patients and controls. The quantitative estimation confirmed that the number of BACE-positive neuronal profiles was not significantly decreased in AD. However, some degeneration of BACE-positive profiles was attested by the colocalization of neurons expressing BACE and exhibiting neurofibrillary tangles (NFT), as well as by a decrease in the surface area of BACE-positive profiles. In addition, BACE immunocytochemical expression was observed in and around senile plaques (SP), as well as in reactive astrocytes. BACE-immunoreactive astrocytes were localized in the vicinity or close to the plaques and their number was significantly increased in AD entorhinal cortex. The higher amount of beta-amyloid SP and NFT in AD was not correlated with an increase in BACE immunoreactivity. Taken together, these data accent that AD progression does not require an increased neuronal BACE protein level, but suggest an active role of BACE in immunoreactive astrocytes. Moreover, the strong expression in controls and regions less vulnerable to AD puts forward the probable existence of alternate BACE functions.
Resumo:
Quantitative or algorithmic trading is the automatization of investments decisions obeying a fixed or dynamic sets of rules to determine trading orders. It has increasingly made its way up to 70% of the trading volume of one of the biggest financial markets such as the New York Stock Exchange (NYSE). However, there is not a signi cant amount of academic literature devoted to it due to the private nature of investment banks and hedge funds. This projects aims to review the literature and discuss the models available in a subject that publications are scarce and infrequently. We review the basic and fundamental mathematical concepts needed for modeling financial markets such as: stochastic processes, stochastic integration and basic models for prices and spreads dynamics necessary for building quantitative strategies. We also contrast these models with real market data with minutely sampling frequency from the Dow Jones Industrial Average (DJIA). Quantitative strategies try to exploit two types of behavior: trend following or mean reversion. The former is grouped in the so-called technical models and the later in the so-called pairs trading. Technical models have been discarded by financial theoreticians but we show that they can be properly cast into a well defined scientific predictor if the signal generated by them pass the test of being a Markov time. That is, we can tell if the signal has occurred or not by examining the information up to the current time; or more technically, if the event is F_t-measurable. On the other hand the concept of pairs trading or market neutral strategy is fairly simple. However it can be cast in a variety of mathematical models ranging from a method based on a simple euclidean distance, in a co-integration framework or involving stochastic differential equations such as the well-known Ornstein-Uhlenbeck mean reversal ODE and its variations. A model for forecasting any economic or financial magnitude could be properly defined with scientific rigor but it could also lack of any economical value and be considered useless from a practical point of view. This is why this project could not be complete without a backtesting of the mentioned strategies. Conducting a useful and realistic backtesting is by no means a trivial exercise since the \laws" that govern financial markets are constantly evolving in time. This is the reason because we make emphasis in the calibration process of the strategies' parameters to adapt the given market conditions. We find out that the parameters from technical models are more volatile than their counterpart form market neutral strategies and calibration must be done in a high-frequency sampling manner to constantly track the currently market situation. As a whole, the goal of this project is to provide an overview of a quantitative approach to investment reviewing basic strategies and illustrating them by means of a back-testing with real financial market data. The sources of the data used in this project are Bloomberg for intraday time series and Yahoo! for daily prices. All numeric computations and graphics used and shown in this project were implemented in MATLAB^R scratch from scratch as a part of this thesis. No other mathematical or statistical software was used.
Resumo:
Maintenance by the kidney of stable plasma K(+) values is crucial, as plasma K(+) controls muscle and nerve activity. Since renal K(+) excretion is regulated by the circadian clock, we aimed to identify the ion transporters involved in this process. In control mice, the renal mRNA expression of H,K-ATPase type 2 (HKA2) is 25% higher during rest compared to the activity period. Conversely, under dietary K(+) restriction, HKA2 expression is ∼40% higher during the activity period. This reversal suggests that HKA2 contributes to the circadian regulation of K(+) homeostasis. Compared to their wild-type (WT) littermates, HKA2-null mice fed a normal diet have 2-fold higher K(+) renal excretion during rest. Under K(+) restriction, their urinary K(+) loss is 40% higher during the activity period. This inability to excrete K(+) "on time" is reflected in plasma K(+) values, which vary by 12% between activity and rest periods in HKA2-null mice but remain stable in WT mice. Analysis of the circadian expression of HKA2 regulators suggests that Nrf2, but not progesterone, contributes to its rhythmicity. Therefore, HKA2 acts to maintain the circadian rhythm of urinary K(+) excretion and preserve stable plasma K(+) values throughout the day.
Resumo:
Human herpesvirus 6 (HHV-6) may cause severe complications after haematopoietic stem cell transplantation (HSCT). Monitoring this virus and providing precise, rapid and early diagnosis of related clinical diseases, constitute essential measures to improve outcomes. A prospective survey on the incidence and clinical features of HHV-6 infections after HSCT has not yet been conducted in Brazilian patients and the impact of this infection on HSCT outcome remains unclear. A rapid test based on real-time quantitative polymerase chain reaction (qPCR) has been optimised to screen and quantify clinical samples for HHV-6. The detection step was based on reaction with TaqMan® hydrolysis probes. A set of previously described primers and probes have been tested to evaluate efficiency, sensitivity and reproducibility. The target efficiency range was 91.4% with linearity ranging from 10-106 copies/reaction and a limit of detection of five copies/reaction or 250 copies/mL of plasma. The qPCR assay developed in the present study was simple, rapid and sensitive, allowing the detection of a wide range of HHV-6 loads. In conclusion, this test may be useful as a practical tool to help elucidate the clinical relevance of HHV-6 infection and reactivation in different scenarios and to determine the need for surveillance.
Resumo:
FANCM remodels branched DNA structures and plays essential roles in the cellular response to DNA replication stress. Here, we show that FANCM forms a conserved DNA-remodeling complex with a histone-fold heterodimer, MHF. We find that MHF stimulates DNA binding and replication fork remodeling by FANCM. In the cell, FANCM and MHF are rapidly recruited to forks stalled by DNA interstrand crosslinks, and both are required for cellular resistance to such lesions. In vertebrates, FANCM-MHF associates with the Fanconi anemia (FA) core complex, promotes FANCD2 monoubiquitination in response to DNA damage, and suppresses sister-chromatid exchanges. Yeast orthologs of these proteins function together to resist MMS-induced DNA damage and promote gene conversion at blocked replication forks. Thus, FANCM-MHF is an essential DNA-remodeling complex that protects replication forks from yeast to human.
Resumo:
Malgrat la rellevància estratègica i el paper desestabilitzador de Corea del Nord a la regió econòmicament més dinàmica del món, la UE no compta amb cap estratègia clara per involucrar-se amb aquest país. Combinant tècniques d’anàlisi qualitatives i quantitatives, aquest treball pretén descobrir possibles contradiccions internes que impedeixin la definició d'una política exterior europea coherent i efectiva amb respecte a Corea del Nord, així com discrepàncies entre les percepcions d’actors interns de la UE i les d’actors externs. S'han detectat importants diferències d’expectatives i mancances en termes de coherència, tant entre les visions expressades pels actors interns com entre les opinions d’aquests actors i les dels futurs líders sudcoreans enquestats – diferències que fins i tot afecten la promoció dels drets humans
Resumo:
The problem of stability analysis for a class of neutral systems with mixed time-varying neutral, discrete and distributed delays and nonlinear parameter perturbations is addressed. By introducing a novel Lyapunov-Krasovskii functional and combining the descriptor model transformation, the Leibniz-Newton formula, some free-weighting matrices, and a suitable change of variables, new sufficient conditions are established for the stability of the considered system, which are neutral-delay-dependent, discrete-delay-range dependent, and distributeddelay-dependent. The conditions are presented in terms of linear matrix inequalities (LMIs) and can be efficiently solved using convex programming techniques. Two numerical examples are given to illustrate the efficiency of the proposed method
Resumo:
Why does the EU have an ambiguous and inconsistent democracy promotion (DP) policy towards the Mediterranean countries? This paper argues that the EU´s DP is determined by a crucial conflict of interests conceptualised as a stability – democracy dilemma. The EU has been attempting to promote democracy, but without risking the current stability and in connivance with incumbent autocratic regimes. In view of this dilemma, the four main characteristics of the EU´s DP promotion are explored, namely: gradualism, a strong notion of partnership-building, a narrow definition of civil society, and a strong belief in economic liberalisation. A fifth feature, relation of the EU with moderate Islamists, is analysed in the paper as it represents the most striking illustration of its contradictions. The paper concludes by arguing that the definition of a clear DP by the EU that considered engagement with moderate Islamists would represent a major step towards squaring its stability – democracy circle.
Resumo:
During the Early Toarcian, major paleoenvironnemental and paleoceanographical changes occurred, leading to an oceanic anoxic event (OAE) and to a perturbation of the carbon isotope cycle. Although the standard biochronology of the Lower Jurassic is essentially based upon ammonites, in recent years biostratigraphy based on calcareous nannofossils and dinoflagellate cysts is increasingly used to date Jurassic rocks. However, the precise dating and correlation of the Early Toarcian OAE, and of the associated delta C-13 anomaly in different settings of the western Tethys, are still partly problematic, and it is still unclear whether these events are synchronous or not. In order to allow more accurate correlations of the organic rich levels recorded in the Lower Toarcian OAE, this account proposes a new biozonation based on a quantitative biochronology approach, the Unitary Associations (UA), applied to calcareous nannofossils. This study represents the first attempt to apply the UA method to Jurassic nannofossils. The study incorporates eighteen sections distributed across western Tethys and ranging from the Pliensbachian to Aalenian, comprising 1220 samples and 72 calcareous nannofossil taxa. The BioGraph [Savary, J., Guex, J., 1999. Discrete biochronological scales and unitary associations: description of the Biograph Computer program. Memoires de Geologie de Lausanne 34, 282 pp] and UA-Graph (Copyright Hammer O., Guex and Savary, 2002) softwares provide a discrete biochronological framework based upon multi-taxa concurrent range zones in the different sections. The optimized dataset generates nine UAs using the co-occurrences of 56 taxa. These UAs are grouped into six Unitary Association Zones (UA-Z), which constitute a robust biostratigraphic synthesis of all the observed or deduced biostratigraphic relationships between the analysed taxa. The UA zonation proposed here is compared to ``classic'' calcareous nannofossil biozonations, which are commonly used for the southern and the northern sides of Tethys. The biostratigraphic resolution of the UA-Zones varies from one nannofossil subzone or part of it to several subzones, and can be related to the pattern of calcareous nannoplankton originations and extinctions during the studied time interval. The Late Pliensbachian - Early Toarcian interval (corresponding to the UA-Z II) represents a major step in the Jurassic nannoplankton radiation. The recognized UA-Zones are also compared to the carbon isotopic negative excursion and TOC maximum in five sections of central Italy, Germany and England, with the aim of providing a more reliable correlation tool for the Early Toarcian OAE, and of the associated isotopic anomaly, between the southern and northern part of western Tethys. The results of this work show that the TOC maximum and delta C-13 negative excursion correspond to the upper part of the UA-Z II (i.e., UA 3) in the sections analysed. This suggests that the Early Toarcian OAE was a synchronous event within the western Tethys. (c) 2006 Elsevier B.V. All rights reserved.
Resumo:
BACKGROUND We evaluated a newly designed electronic portfolio (e-Portfolio) that provided quantitative evaluation of surgical skills. Medical students at the University of Seville used the e-Portfolio on a voluntary basis for evaluation of their performance in undergraduate surgical subjects. METHODS Our new web-based e-Portfolio was designed to evaluate surgical practical knowledge and skills targets. Students recorded each activity on a form, attached evidence, and added their reflections. Students self-assessed their practical knowledge using qualitative criteria (yes/no), and graded their skills according to complexity (basic/advanced) and participation (observer/assistant/independent). A numerical value was assigned to each activity, and the values of all activities were summated to obtain the total score. The application automatically displayed quantitative feedback. We performed qualitative evaluation of the perceived usefulness of the e-Portfolio and quantitative evaluation of the targets achieved. RESULTS Thirty-seven of 112 students (33%) used the e-Portfolio, of which 87% reported that they understood the methodology of the portfolio. All students reported an improved understanding of their learning objectives resulting from the numerical visualization of progress, all students reported that the quantitative feedback encouraged their learning, and 79% of students felt that their teachers were more available because they were using the e-Portfolio. Only 51.3% of students reported that the reflective aspects of learning were useful. Individual students achieved a maximum of 65% of the total targets and 87% of the skills targets. The mean total score was 345 ± 38 points. For basic skills, 92% of students achieved the maximum score for participation as an independent operator, and all achieved the maximum scores for participation as an observer and assistant. For complex skills, 62% of students achieved the maximum score for participation as an independent operator, and 98% achieved the maximum scores for participation as an observer or assistant. CONCLUSIONS Medical students reported that use of an electronic portfolio that provided quantitative feedback on their progress was useful when the number and complexity of targets were appropriate, but not when the portfolio offered only formative evaluations based on reflection. Students felt that use of the e-Portfolio guided their learning process by indicating knowledge gaps to themselves and teachers.
Resumo:
In this paper, we give a new construction of resonant normal forms with a small remainder for near-integrable Hamiltonians at a quasi-periodic frequency. The construction is based on the special case of a periodic frequency, a Diophantine result concerning the approximation of a vector by independent periodic vectors and a technique of composition of periodic averaging. It enables us to deal with non-analytic Hamiltonians, and in this first part we will focus on Gevrey Hamiltonians and derive normal forms with an exponentially small remainder. This extends a result which was known for analytic Hamiltonians, and only in the periodic case for Gevrey Hamiltonians. As applications, we obtain an exponentially large upper bound on the stability time for the evolution of the action variables and an exponentially small upper bound on the splitting of invariant manifolds for hyperbolic tori, generalizing corresponding results for analytic Hamiltonians.
Resumo:
This paper is a sequel to ``Normal forms, stability and splitting of invariant manifolds I. Gevrey Hamiltonians", in which we gave a new construction of resonant normal forms with an exponentially small remainder for near-integrable Gevrey Hamiltonians at a quasi-periodic frequency, using a method of periodic approximations. In this second part we focus on finitely differentiable Hamiltonians, and we derive normal forms with a polynomially small remainder. As applications, we obtain a polynomially large upper bound on the stability time for the evolution of the action variables and a polynomially small upper bound on the splitting of invariant manifolds for hyperbolic tori.
Resumo:
We improved, evaluated, and used Sanger sequencing for quantification of single nucleotide polymorphism (SNP) variants in transcripts and gDNA samples. This improved assay resulted in highly reproducible relative allele frequencies (e.g., for a heterozygous gDNA 50.0+/-1.4%, and for a missense mutation-bearing transcript 46.9+/-3.7%) with a lower detection limit of 3-9%. It provided excellent accuracy and linear correlation between expected and observed relative allele frequencies. This sequencing assay, which can also be used for the quantification of copy number variations (CNVs), methylations, mosaicisms, and DNA pools, enabled us to analyze transcripts of the FBN1 gene in fibroblasts and blood samples of patients with suspected Marfan syndrome not only qualitatively but also quantitatively. We report a total of 18 novel and 19 known FBN1 sequence variants leading to a premature termination codon (PTC), 26 of which we analyzed by quantitative sequencing both at gDNA and cDNA levels. The relative amounts of PTC-containing FBN1 transcripts in fresh and PAXgene-stabilized blood samples were significantly higher (33.0+/-3.9% to 80.0+/-7.2%) than those detected in affected fibroblasts with inhibition of nonsense-mediated mRNA decay (NMD) (11.0+/-2.1% to 25.0+/-1.8%), whereas in fibroblasts without NMD inhibition no mutant alleles could be detected. These results provide evidence for incomplete NMD in leukocytes and have particular importance for RNA-based analyses not only in FBN1 but also in other genes.