951 resultados para NUCLEAR FUELS
Resumo:
OBJETIVO: averiguar as alterações induzidas pela quimioterapia primária no fenótipo celular. MÉTODOS: avaliamos a expressão do antígeno nuclear de proliferação celular (PCNA) e dos receptores de estrogênio (RE) e de progesterona (RP) em 17 tumores de mama no estádio clínico II, obtidos antes e após a terapia antiblástica, por método imuno-histoquímico. Os valores foram relacionados com o estado menstrual, com a resposta clínica tumoral e com o comprometimento axilar. RESULTADOS: houve redução significante na porcentagem de células coradas pelo anti-PCNA antes (tempo A) e após (tempo B) a quimioterapia (p=0,041). Observamos também resultados significantes ao compararmos os índices médios de PCNA com o grau histológico GII/GIII [tempo A=63,1 e tempo B=38,7 (p=0,049)] e nos casos em que houve resposta clínica [tempo A=53,1 e tempo B=34,4 (p=0,011)]. Não observamos relação significante entre os índices de PCNA com o estado menstrual e o axilar. Houve redução significante do RE após a quimioterapia nas pacientes pré-menopausadas [tempo A=60,3 e tempo B=24,1 (p=0,027)] e naquelas que apresentaram resposta clínica ao tratamento [tempo A=59,1 e tempo B=37,9 (p=0,030)]. Observamos aumento significante do RP após a quimioterapia nas pacientes pós-menopausadas [tempo A=35,3 e tempo B=58,3 (p=0,023)]. Não encontramos relação entre os receptores hormonais e o comprometimento axilar. CONCLUSÕES: a diminuição dos índices de PCNA nos tumores de alto grau histológico, do RE nas pacientes pré-menopausadas e de ambos, PCNA e RE, nos tumores com redução clínica após a quimioterapia nos mostra que ela atuou sobre as células em proliferação e que o PCNA pode ser utilizado como parâmetro de resposta a este tratamento.
Resumo:
OBJETIVOS: avaliar a variação do grau nuclear e da expressão das proteínas p53 e c-erbB-2 e dos receptores de estrógeno (RE) no carcinoma ductal in situ (CDIS) e no carcinoma invasivo, presentes na mesma mama. MÉTODOS: estudo descritivo retrospectivo com 38 mulheres com CDIS associado a carcinoma invasivo da mama. Foi avaliado o grau nuclear e o realizado estudo imunohistoquímico para expressão das proteínas p53 e c-erbB-2 e para os RE. Os casos considerados positivos para a expressão das proteínas e dos RE foram aqueles com contagem de células positivas igual ou superior a 10%. A concordância entre estas variáveis no componente in situ e invasivo foi avaliada pelo coeficiente kappa (k), interpretado de acordo com os critérios de Landis e Koch. O teste de MacNemar foi usado para testar diferenças entre os dois grupos. RESULTADOS: a concordância entre o grau nuclear e a expressão dos RE nos componentes in situ e invasivo foi de 0,89 para ambos, quase perfeita. A concordância para a expressão da proteína c-erbB-2 também foi considerada quase perfeita, com coeficiente de 0,84. Já a concordância entre a expressão da proteína p53 no componente in situ e no invasivo foi de 1,0, considerada perfeita. Não houve diferenças significativas entre o grau nuclear e as expressões das proteínas e dos RE nos componentes in situ e invasivo na mesma mama. CONCLUSÕES: existe concordância alta do grau nuclear e da expressão das proteínas p53 e c-erbB-2 no CDIS e no carcinoma invasivo presentes na mesma mama.
Resumo:
A gemelaridade imperfeita é entidade bastante rara e de grande interesse para fetólogos e obstetras em geral. Sua incidência estimada varia de 1:50.000 a 1:200.000 nascimentos. Seu diagnóstico precoce se faz necessário, tendo em vista sua importância para o prognóstico da gestação, correta determinação da via de parto e o planejamento pós-natal. Os dois casos relatados são de gêmeos unidos diagnosticados no pré-natal através da ultra-sonografia e ressonância nuclear magnética, para estudo do compartilhamento dos órgãos e melhor definição das relações anatômicas. O primeiro par gemelar foi cefalópago, ou seja, unidos pela cabeça, tórax e abdome, com duas pelves e oito membros. O segundo foi toracópago, ou seja, unidos pelo tórax e abdome superior. A ressonância magnética pouco contribuiu para o diagnóstico de gêmeos unidos. Entretanto, se mostrou de grande auxílio na descrição dos órgãos compartilhados entre os fetos, contribuindo na definição do prognóstico fetal.
Resumo:
PURPOSE:To compare the prognostic and predictive features between in situ and invasive components of ductal breast carcinomas. METHODS:We selected 146 consecutive breast samples with ductal carcinoma in situ (DCIS) associated with adjacent invasive breast carcinoma (IBC). We evaluated nuclear grade and immunohistochemical expression of estrogen receptor (ER), progesterone receptor (PR), human epidermal growth factor receptor 2 (HER2), cytokeratin 5/6 (CK5/6), and epidermal growth factor receptor (EGFR) in both components, in situ and invasive, and the Ki-67 percentage of cells in the invasive part. The DCIS and IBC were classified in molecular surrogate types determined by the immunohistochemical profile as luminal (RE/PR-positive/ HER2-negative), triple-positive (RE/RP/HER2-positive), HER2-enriched (ER/PR-negative/HER2-positive), and triple-negative (RE/RP/HER2-negative). Discrimination between luminal A and luminal B was not performed due to statistical purposes. Correlations between the categories in the two groups were made using the Spearman correlation method. RESULTS:There was a significant correlation between nuclear grade (p<0.0001), expression of RE/RP (p<0.0001), overexpression of HER2 (p<0.0001), expression of EGFR (p<0.0001), and molecular profile (p<0.0001) between components in situ and IBC. CK 5/6 showed different distribution in DCIS and IBC, presenting a significant association with the triple-negative phenotype in IBC, but a negative association among DCIS. CONCLUSIONS: Our results suggest that classical prognostic and predictive features of IBC are already determined in the preinvasive stage of the disease. However the role of CK5/6 in invasive carcinoma may be different from the precursor lesions.
Resumo:
Several characteristics are important in a traceability system of animal products, such as age at slaughter, breed composition, besides information of the productive chain. In general, the certification agent records information about the animals and the system which it came from, although cannot guarantee that the slaughtering, meat processing and distribution are error proof. Besides, there is a differential price, at least at the international market, based on sex and breed composition of the animals. Genetic markers allow identification of characteristics controlled in the beef cattle traceability program, as sex and breed composition, in order to correctly identify and appraise the final product for the consumer. The hypothesis of this study was that the majority beef samples retailed in the local market originate from female with a great participation of zebu breeds. Therefore, the objective of this work was to characterize retail beef samples with DNA markers that identify cattle sex and breed composition. Within 10 beef shops localized in Pirassununga, SP, Brazil, 61 samples were collected, all were genotyped as harboring Bos taurus mitochondrial DNA and 18 were positive for the Y chromosome amplification (male). For the marker sat1711b-Msp I the frequency of the allele A was 0.278 and for the marker Lhr-Hha I the frequency of the allele T was 0.417. The results of sat1711b-Msp I and Lhr-Hha I allelic frequencies are suggestive that the proportion of indicus genome compared with the taurine genome in the market meat is smaller than the observed in the Nellore breed. The procedure described in this study identified sex and subspecies characteristics of beef meat samples, with potential application in meat products certification in special as an auxiliary tool in beef cattle traceability programs.
Resumo:
Computational fluid dynamics (CFD) modeling is an important tool in designing new combustion systems. By using CFD modeling, entire combustion systems can be modeled and the emissions and the performance can be predicted. CFD modeling can also be used to develop new and better combustion systems from an economical and environmental point of view. In CFD modeling of solid fuel combustion, the combustible fuel is generally treated as single fuel particles. One of the limitations with the CFD modeling concerns the sub-models describing the combustion of single fuel particles. Available models in the scientific literature are in many cases not suitable as submodels for CFD modeling since they depend on a large number of input parameters and are computationally heavy. In this thesis CFD-applicable models are developed for the combustion of single fuel particles. The single particle models can be used to improve the combustion performance in various combustion devices or develop completely new technologies. The investigated fields are oxidation of carbon (C) and nitrogen (N) in char residues from solid fuels. Modeled char-C oxidation rates are compared to experimental oxidation rates for a large number of pulverized solid fuel chars under relevant combustion conditions. The experiments have been performed in an isothermal plug flow reactor operating at 1123-1673 K and 3-15 vol.% O2. In the single particle model, the char oxidation is based on apparent kinetics and depends on three fuel specific parameters: apparent pre-exponential factor, apparent activation energy, and apparent reaction order. The single particle model can be incorporated as a sub-model into a CFD code. The results show that the modeled char oxidation rates are in good agreement with experimental char oxidation rates up to around 70% of burnout. Moreover, the results show that the activation energy and the reaction order can be assumed to be constant for a large number of bituminous coal chars under conditions limited by the combined effects of chemical kinetics and pore diffusion. Based on this, a new model based on only one fuel specific parameter is developed (Paper III). The results also show that reaction orders of bituminous coal chars and anthracite chars differ under similar conditions (Paper I and Paper II); reaction orders of bituminous coal chars were found to be one, while reaction orders of anthracite chars were determined to be zero. This difference in reaction orders has not previously been observed in the literature and should be considered in future char oxidation models. One of the most frequently used comprehensive char oxidation models could not explain the difference in the reaction orders. In the thesis (Paper II), a modification to the model is suggested in order to explain the difference in reaction orders between anthracite chars and bituminous coal chars. Two single particle models are also developed for the NO formation and reduction during the oxidation of single biomass char particles. In the models the char-N is assumed to be oxidized to NO and the NO is partly reduced inside the particle. The first model (Paper IV) is based on the concentration gradients of NO inside and outside the particle and the second model is simplified to such an extent that it is based on apparent kinetics and can be incorporated as a sub-model into a CFD code (Paper V). Modeled NO release rates from both models were in good agreement with experimental measurements from a single particle reactor of quartz glass operating at 1173-1323 K and 3-19 vol.% O2. In the future, the models can be used to reduce NO emissions in new combustion systems.
Resumo:
Aims of this study were to evaluate the relations of nuclear morphometry, mitotic and apoptotic indices, and tubular differentiation with clinicopathological features and survival rate in Libyan women. The data were compared with corresponding results on Finnish, and Nigerian female breast cancer patients. Histological samples of breast cancer (BC) from 131 patients were retrospectively studied. Mitotic activity indices (MAI and SMI), apoptotic index (AI), and fraction of fields with tubular differentiation (FTD) were estimated. Samples were also studied by computerized nuclear morphometry, such as mean nuclear area (MNA). Demographic and clinicopathological features were analyzed from 234 patients. The Libyan BC was dominantly premenopausal, and aggressive in behavior. There were statistically significant correlations between the mean nuclear area, fraction of fields with tubular differentiation, apoptotic index and proliferative indices, and most clinicopathological features. The highest significances were shown between lymph node status and the proliferative and apoptotic indices (p=0.003 with SMI, and p=0.005 with AI). There were significant associations between clinical stage and SMI and AI (p=0.002 and 0.009, respectively). The most significant associations with grade were observed with MNA and FTD (p<0.0001 and 0.001, respectively). The proliferative differences between Libyan, Nigerian and Finnish populations were prominent. These indices in Libyan were lower than in Nigerian, but higher than in Finnish patients. The Libyan patients’ AI is slightly higher than in Nigeria, but much higher than in Finland. The differences between countries may be associated with the known variation in the distribution of genetic markers in these populations. The results also indicated that morphometric factors can be reliable prognostic indicators in Libyan BC patients.
Resumo:
More discussion is required on how and which types of biomass should be used to achieve a significant reduction in the carbon load released into the atmosphere in the short term. The energy sector is one of the largest greenhouse gas (GHG) emitters and thus its role in climate change mitigation is important. Replacing fossil fuels with biomass has been a simple way to reduce carbon emissions because the carbon bonded to biomass is considered as carbon neutral. With this in mind, this thesis has the following objectives: (1) to study the significance of the different GHG emission sources related to energy production from peat and biomass, (2) to explore opportunities to develop more climate friendly biomass energy options and (3) to discuss the importance of biogenic emissions of biomass systems. The discussion on biogenic carbon and other GHG emissions comprises four case studies of which two consider peat utilization, one forest biomass and one cultivated biomasses. Various different biomass types (peat, pine logs and forest residues, palm oil, rapeseed oil and jatropha oil) are used as examples to demonstrate the importance of biogenic carbon to life cycle GHG emissions. The biogenic carbon emissions of biomass are defined as the difference in the carbon stock between the utilization and the non-utilization scenarios of biomass. Forestry-drained peatlands were studied by using the high emission values of the peatland types in question to discuss the emission reduction potential of the peatlands. The results are presented in terms of global warming potential (GWP) values. Based on the results, the climate impact of the peat production can be reduced by selecting high-emission-level peatlands for peat production. The comparison of the two different types of forest biomass in integrated ethanol production in pulp mill shows that the type of forest biomass impacts the biogenic carbon emissions of biofuel production. The assessment of cultivated biomasses demonstrates that several selections made in the production chain significantly affect the GHG emissions of biofuels. The emissions caused by biofuel can exceed the emissions from fossil-based fuels in the short term if biomass is in part consumed in the process itself and does not end up in the final product. Including biogenic carbon and other land use carbon emissions into the carbon footprint calculations of biofuel reveals the importance of the time frame and of the efficiency of biomass carbon content utilization. As regards the climate impact of biomass energy use, the net impact on carbon stocks (in organic matter of soils and biomass), compared to the impact of the replaced energy source, is the key issue. Promoting renewable biomass regardless of biogenic GHG emissions can increase GHG emissions in the short term and also possibly in the long term.
Resumo:
The decreasing fossil fuel resources combined with an increasing world energy demand has raised an interest in renewable energy sources. The alternatives can be solar, wind and geothermal energies, but only biomass can be a substitute for the carbon–based feedstock, which is suitable for the production of transportation fuels and chemicals. However, a high oxygen content of the biomass creates challenges for the future chemical industry, forcing the development of new processes which allow a complete or selective oxygen removal without any significant carbon loss. Therefore, understanding and optimization of biomass deoxygenation processes are crucial for the future bio–based chemical industry. In this work, deoxygenation of fatty acids and their derivatives was studied over Pd/C and TiO2 supported noble metal catalysts (Pt, Pt–Re, Re and Ru) to obtain future fuel components. The 5 % Pd/C catalyst was investigated in semibatch and fixed bed reactors at 300 °C and 1.7–2 MPa of inert and hydrogen–containing atmospheres. Based on extensive kinetic studies, plausible reaction mechanisms and pathways were proposed. The influence of the unsaturation in the deoxygenation of model compounds and industrial feedstock – tall oil fatty acids – over a Pd/C catalyst was demonstrated. The optimization of the reaction conditions suppressed the formation of by–products, hence high yields and selectivities towards linear hydrocarbons and catalyst stability were achieved. Experiments in a fixed bed reactor filled with a 2 % Pd/C catalyst were performed with stearic acid as a model compound at different hydrogen–containing gas atmospheres to understand the catalyst stability under various conditions. Moreover, prolonged experiments were carried out with concentrated model compounds to reveal the catalyst deactivation. New materials were proposed for the selective deoxygenation process at lower temperatures (~200 °C) with a tunable selectivity to hydrodeoxygenation by using 4 % Pt/TiO2 or decarboxylation/decarbonylation over 4 % Ru/TiO2 catalysts. A new method for selective hydrogenation of fatty acids to fatty alcohols was demonstrated with a 4 % Re/TiO2 catalyst. A reaction pathway and mechanism for TiO2 supported metal catalysts was proposed and an optimization of the process conditions led to an increase in the formation of the desired products.
Resumo:
The binding capacity of concanavalin A (Con A) to condensed euchromatin and heterochromatin was investigated in chicken erythrocyte nuclei (CEN), mouse liver cells, Zea mays mays meristematic cells and Drosophila melanogaster polytene chromosomes after 4 N HCl hydrolysis to determine whether binding was preferentially occurring in bands and heterochromatin. Dry mass (DM) variation was investigated in CEN by interference microscopy. Feulgen and Con A reactions were employed for all materials to correlate the loci of the two reactions. Quantifications and topological verifications were carried out by video image analysis (high performance cytometry). It was observed that 4 N HCl hydrolysis caused an important DM loss in CEN leaving a level corresponding to the average DNA DM content. In this material, Con A binding was restricted to the nuclear envelope, which reinforces the idea of the absence of a nuclear matrix in these cells. The other cell types exhibited a correspondence of Feulgen-positive and Con A-reactive areas. The Con A reaction was highly positive in the condensed chromatin areas and heterochromatin. This fact led us to speculate that Con A-positive proteins may play a role in the chromatin condensation mechanism, endowing this structure with physico-chemical stability towards acid hydrolysis and contributing to its rheological properties.
Resumo:
Some basic topics concerned with the extraction of textural and geometric information from cell nucleus images as well as description and characterization of chromatin supraorganization and consequent classification of nuclear phenotypes are presented.
Resumo:
The present paper reviews the application of patch-clamp principles to the detection and measurement of macromolecular translocation along the nuclear pores. We demonstrate that the tight-seal 'gigaseal' between the pipette tip and the nuclear membrane is possible in the presence of fully operational nuclear pores. We show that the ability to form a gigaseal in nucleus-attached configurations does not mean that only the activity of channels from the outer membrane of the nuclear envelope can be detected. Instead, we show that, in the presence of fully operational nuclear pores, it is likely that the large-conductance ion channel activity recorded derives from the nuclear pores. We conclude the technical section with the suggestion that the best way to demonstrate that the nuclear pores are responsible for ion channel activity is by showing with fluorescence microscopy the nuclear translocation of ions and small molecules and the exclusion of the same from the cisterna enclosed by the two membranes of the envelope. Since transcription factors and mRNAs, two major groups of nuclear macromolecules, use nuclear pores to enter and exit the nucleus and play essential roles in the control of gene activity and expression, this review should be useful to cell and molecular biologists interested in understanding how patch-clamp can be used to quantitate the translocation of such macromolecules into and out of the nucleus