950 resultados para Multiple Factor Role


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Background: Targeting the biosynthetic pathway of Coenzyme A (CoA) for drug development will compromise multiple cellular functions of the tubercular pathogen simultaneously. Structural divergence in the organization of the penultimate and final enzymes of CoA biosynthesis in the host and pathogen and the differences in their regulation mark out the final enzyme, dephosphocoenzyme A kinase (CoaE) as a potential drug target. Methodology/Principal Findings: We report here a complete biochemical and biophysical characterization of the M. tuberculosis CoaE, an enzyme essential for the pathogen's survival, elucidating for the first time the interactions of a dephosphocoenzyme A kinase with its substrates, dephosphocoenzyme A and ATP; its product, CoA and an intrinsic yet novel inhibitor, CTP, which helps modulate the enzyme's kinetic capabilities providing interesting insights into the regulation of CoaE activity. We show that the mycobacterial enzyme is almost 21 times more catalytically proficient than its counterparts in other prokaryotes. ITC measurements illustrate that the enzyme follows an ordered mechanism of substrate addition with DCoA as the leading substrate and ATP following in tow. Kinetic and ITC experiments demonstrate that though CTP binds strongly to the enzyme, it is unable to participate in DCoA phosphorylation. We report that CTP actually inhibits the enzyme by decreasing its Vmax. Not surprisingly, a structural homology search for the modeled mycobacterial CoaE picks up cytidylmonophosphate kinases, deoxycytidine kinases, and cytidylate kinases as close homologs. Docking of DCoA and CTP to CoaE shows that both ligands bind at the same site, their interactions being stabilized by 26 and 28 hydrogen bonds respectively. We have also assigned a role for the universal Unknown Protein Family 0157 (UPF0157) domain in the mycobacterial CoaE in the proper folding of the full length enzyme. Conclusions/Significance: In view of the evidence presented, it is imperative to assign a greater role to the last enzyme of Coenzyme A biosynthesis in metabolite flow regulation through this critical biosynthetic pathway.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Transforming growth factor β signalling through Smad3 in allergy Allergic diseases, such as atopic dermatitis, asthma, and contact dermatitis are complex diseases influenced by both genetic and environmental factors. It is still unclear why allergy and subsequent allergic disease occur in some individuals but not in others. Transforming growth factor (TGF)-β is an important immunomodulatory and fibrogenic factor that regulates cellular processes in injured and inflamed skin. TGF-β has a significant role in the regulation of the allergen-induced immune response participating in the development of allergic and asthmatic inflammation. TGF-β is known to be an immunomodulatory factor in the progression of delayed type hypersensitivity reactions and allergic contact dermatitis. TGF-β is crucial in regulating the cellular responses involved in allergy, such as differentiation, proliferation and migration. TGF-β signals are delivered from the cytoplasm to the nucleus by TGF-β signal transducers called Smads. Smad3 is a major signal transducer in TGF-β -signalling that controls the expression of target genes in the nucleus in a cell-type specific manner. The role of TGF-β-Smad3 -signalling in the immunoregulation and pathophysiology of allergic disorders is still poorly understood. In this thesis, the role of TGF-β-Smad -signalling pathway using Smad3 -deficient knock out mice in the murine models of allergic diseases; atopic dermatitis, asthma and allergic contact reactions, was examined. Smad3-pathway regulates allergen induced skin inflammation and systemic IgE antibody production in a murine model atopic dermatitis. The defect in Smad3 -signalling decreased Th2 cytokine (IL-13 and IL-5) mRNA expression in the lung, modulated allergen induced specific IgG1 response, and affected mucus production in the lung in a murine model of asthma. TGF-β / Smad3 -signalling contributed to inflammatory hypersensitivity reactions and disease progression via modulation of chemokine and cytokine expression and inflammatory cell recruitment, cell proliferation and regulation of the specific antibody response in a murine model of contact hypersensitivity. TGF-β modulates inflammatory responses - at least partly through the Smad3 pathway - but also through other compensatory, non-Smad-dependent pathways. Understanding the effects of the TGF-β signalling pathway in the immune system and in disease models can help in elucidating the multilevel effects of TGF-β. Unravelling the mechanisms of Smad3 may open new possibilities for treating and preventing allergic responses, which may lead to severe illness and loss of work ability. In the future the Smad3 signalling pathway might be a potential target in the therapy of allergic diseases.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Atherosclerosis is an inflammatory disease characterized by accumulation of lipids in the inner layer of the arterial wall. During atherogenesis, various structures that are recognized as non-self by the immune system, such as modified lipoproteins, are deposited in the arterial wall. Accordingly, atherosclerotic lesions and blood of humans and animals with atherosclerotic lesions show signs of activation of both innate and adaptive immune responses. Although immune attack is initially a self-protective reaction, which is meant to destroy or remove harmful agents, a chronic inflammatory state in the arterial wall accelerates atherosclerosis. Indeed, various modulations of the immune system of atherosclerosis-prone animals have provided us with convincing evidence that immunological mechanisms play an important role in the pathogenesis of atherosclerosis. This thesis focuses on the role of complement system, a player of the innate immunity, in atherosclerosis. Complement activation via any of the three different pathways (classical, alternative, lectin) proceeds as a self-amplifying cascade, which leads to the generation of opsonins, anaphylatoxins C3a and C5a, and terminal membrane-attack complex (MAC, C5b-9), all of which regulate the inflammatory response and act in concert to destroy their target structures. To prevent uncontrolled complement activation or its attack against normal host cells, complement needs to be under strict control by regulatory proteins. The complement system has been shown to be activated in atherosclerotic lesions, modified lipoproteins and immune complexes containing oxLDL, for instance, being its activators. First, we investigated the presence and role of complement regulators in human atherosclerotic lesions. We found that inhibitors of the classical and alternative pathways, C4b-binding protein and factor H, respectively, were present in atherosclerotic lesions, where they localized in the superficial proteoglycan-rich layer. In addition, both inhibitors were found to bind to arterial proteoglycans in vitro. Immunohistochemical stainings revealed that, in the superficial layer of the intima, complement activation had been limited to the C3 level, whereas in the deeper intimal layers, complement activation had proceeded to the terminal C5b-9 level. We were also able to show that arterial proteoglycans inhibit complement activation in vitro. These findings suggested to us that the proteoglycan-rich layer of the arterial intima contains matrix-bound complement inhibitors and forms a protective zone, in which complement activation is restricted to the C3 level. Thus, complement activation is regulated in atherosclerotic lesions, and the extracellular matrix is involved in this process. Next, we studied whether the receptors for the two complement derived effectors, anaphylatoxins C3a and C5a, are expressed in human coronary atherosclerotic lesions. Our results of immunohistochemistry and RT-PCR analysis showed that, in contrast to normal intima, C3aR and C5aR were highly expressed in atherosclerotic lesions. In atherosclerotic plaques, the principal cells expressing both C3aR and C5aR were macrophages. Moreover, T cells expressed C5aR, and a small fraction of them also expressed C3aR, mast cells expressed C5aR, whereas endothelial cells and subendothelial smooth muscle cells expressed both C3aR and C5aR. These results suggested that intimal cells can respond to and become activated by complement-derived anaphylatoxins. Finally, we wanted to learn, whether oxLDL-IgG immune complexes, activators of the classical complement pathway, could have direct cellular effects in atherogenesis. Thus, we tested whether oxLDL-IgG immune complexes affect the survival of human monocytes, the precursors of macrophages, which are the most abundant inflammatory cell type in atherosclerotic lesions. We found that OxLDL-IgG immune complexes, in addition to transforming monocytes into foam cells, promoted their survival by decreasing their spontaneous apoptosis. This effect was mediated by cross-linking Fc receptors with ensuing activation of Akt-dependent survival signaling. Our finding revealed a novel mechanism by which oxLDL-IgG immune complexes can directly affect the accumulation of monocyte-macrophages in human atherosclerotic lesions and thus play a role in atherogenesis.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Acute pancreatitis (AP), a common cause of acute abdominal pain, is usually a mild, self-limited disease. However, some 20-30% of patients develop a severe disease manifested by pancreatic necrosis, abscesses or pseudocysts, and/or extrapancreatic complications, such as vital organ failure (OF). Patients with AP develop systemic inflammation, which is considered to play a role in the pathogenesis of multiple organ failure (MOF). OF mimics the condition seen in patients with sepsis, which is characterized by an overwhelming production of inflammatory mediators, activation of the complement system and systemic activation of coagulation, as well as the development of disseminated intravascular coagulation (DIC) syndrome. Vital OF is the major cause of mortality in AP, along with infectious complications. About half of the deaths occur within the first week of hospitalization and thus, early identification of patients likely to develop OF is important. The aim of the present study was to investigate inflammatory and coagulation disturbances in AP and to find inflammatory and coagulation markers for predicting severe AP, and development of OF and fatal outcome. This clinical study consists of four parts. All of patients studied had AP when admitted to Helsinki University Central Hospital. In the first study, 31 patients with severe AP were investigated. Their plasma levels of protein C (PC) and activated protein C (APC), and monocyte HLA-DR expression were studied during the treatment period in the intensive care unit; 13 of these patients developed OF. In the second study, the serum levels of complement regulator protein CD59 were studied in 39 patients during the first week of hospitalization; 12 of them developed OF. In the third study, 165 patients were investigated; their plasma levels of soluble form of the receptor for advanced glycation end products (sRAGE) and high mobility group box 1 (HMGB1) protein were studied during the first 12 days of hos-pitalization; 38 developed OF. In the fourth study, 33 patients were studied on admission to hospital for plasma levels of prothrombin fragment F1+2 and tissue factor pathway inhibitor (TFPI), and thrombin formation capacity by calibrated automated thrombogram (CAT); 9 of them developed OF. Our results showed significant PC deficiency and decreased APC generation in patients with severe AP. The PC pathway defects seemed to be associated with the development of OF. In patients who developed OF, the levels of serum CD59 and plasma sRAGE, but not of HMGB1, were significantly higher than in patients who recovered without OF. The high CD59 levels on admission to the hospital seemed to be predictive for severe AP and OF. The median of the highest sRAGE levels was significantly higher in non-survivors than in survivors. No significant difference between the patient groups was found in the F1+2 levels. The thrombograms of all patients were disturbed in their shape, and in 11 patients the exogenous tissue factor did not trigger thrombin generation at all ( flat curve ). All of the patients that died displayed a flat curve. Free TFPI levels and free/total TFPI ratios were significantly higher in patients with a flat curve than in the others, and these levels were also significantly higher in non-survivors than in survivors. The flat curve in combination with free TFPI seemed to be predictive for a fatal outcome in AP.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Androgens and the androgen receptor (AR) play a crucial role in the initiation and progression of prostate cancer (PCa), regulating the expression of many PCa risk-associated genes. Iroquois Homeobox 4 (IRX4) has been recently identified with PCa risk and overexpressed in PCa. We observed a down-regulation of IRX4 expression in the cells undergoing epithelial to mesenchymal transition, suggesting its potential role in PCa progression and aim to delineate the androgenmediated regulation of IRX4 in PCa.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Premature delivery is a major cause of neonatal morbidity and mortality. The incidence of premature deliveries has increased around the world. In Finland 5.3%, or about 3,000 children per year are born prematurely, before 37 weeks of gestation. The corresponding figure in the United States is about 13%. The morbidity and mortality are highest among infants delivered before 32 weeks of gestation - about 600 children each year in Finland. Approximately 70% of premature deliveries are unexplained. Preterm delivery can be caused by an asympto-matic infection between uterus and the fetal membranes, such can begin already in early pregnancy. It is difficult to predict preterm delivery, and many patients are therefore unnecessarily admitted to hospital for observation and exposed to medical treatments. On the other hand, the high risk women should be identified early for the best treatment of the mother and preterm infant. --- In the prospective study conducted at the Department of Obstetric and Gynecology, Helsinki University Central Hospital two biochemical inflammation related markers were measured in the lower genital tract fluids of asymp-tomatic women in early and mid pregnancy in an order to see whether these markers could identify women with an increased risk of preterm delivery. These biomarkers were phosphorylated insulin-like growth factor binding protein-1 (phIGFBP-1) and matrix metalloproteinase-8 (MMP-8). The study involved 5180 asymptomatic pregnant women, examined during the first and second ultrasound screening visits. The study samples were taken from the vagina and cervicix. In addition, 246 symptomatic women were studied (pregnancy weeks 22 – 34). The study showed that increased phIGFBP-1 concentration in cervical canal fluid in early pregnancy increased the risk for preterm delivery. The risk for very premature birth (before 32 weeks of gestation) was nearly four-fold. Low MMP-8 concentration in mid pregnancy increased the risk of subsequent premature preterm rupture of fetal membranes (PPROM). Significantly high MMP-8 concentrations in the cervical fluid increased the risk for prema-ture delivery initiated by preterm labour with intact membranes. Among women with preterm contractions the shortened cervical length measured by ultrasound and elevated cervical fluid phIGFBP-1 both predicted premature delivery. In summary, because of the relatively low sensitivity of cervical fluid phIGFBP-1 this biomarker is not suitable for routine screening, but provides an additional tool in assessing the risk of preterm delivery. Cervical fluid MMP-8 is not useful in early or mid pregnancy in predicting premature delivery because of its dual role. Further studies on the role of MMP-8 are therefore needed. Our study confirms that phIGFBP-1 testing is useful in predicting pre-term delivery.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The aim of this study was twofold- Firstly, to determine the composition of the type IV collagen which are the major components of the basement membrane (BM), in the synovial lining of the rheumatoid arthritis (RA) patient and in the BM in the labial salivary gland of the Sjögrens syndrome (SS) patient. Secondly, this thesis aimed to investigate the role of the BM component laminin α4 and laminin α5 in the migration of neutrophils from the blood vessels thorough the synovial lining layer into synovial fluid and the presence of vWF in the microvasculature of labial salivary gland in SS. Our studies showed that certain α chains type IV collagen are low in RA compared to control synovial linings, while laminin α5 exhibited a pattern of low expression regions at the synovial lining interface towards the joint cavity and fluid. Also, high numbers of macrophage-like lining cells containing MMP-9 were found in the lining. MMP-9 was also found in the synovial fluid. Collagen α1/2 (IV) mRNA was found to be present in high amount compared to the other α(IV) chains and also showed intense labelling in immunohistochemical staining in normal and SS patients. In healthy glands α5(IV) and α6(IV) chains were found to be continuous around ducts but discontinuous around acini. The α5(IV) and α6(IV) mRNAs were present in LSG explants and HSG cell line, while in SS these chains seemed to be absent or appear only in patches around the ductal BM and tended to be absent around acini in immunohistochemical staining, indicating that their synthesis and/or degradation seemed to be locally regulated around acinar cells. The provisional matrix component vWF serves as a marker of vascular damage. Microvasculature in SS showed signs of focal damage which in turn might impair arteriolar feeding, capillary transudation and venular drainage of blood. However, capillary density was not decreased but rather increased, perhaps as a result of angiogenesis compensatory to microvascular damage. Microvascular involvement of LSG may contribute to the pathogenesis of this syndrome. This twofold approach allows us to understand the intricate relation between the ECM components and the immunopathological changes that occur during the pathogenesis of these inflammatory rheumatic disease processes. Also notably this study highlights the importance of maintaining a healthy ECM to prevent the progression or possibly allow reversal of the disease to a considerable level. Furthermore, it can be speculated that a healthy BM could quarantine the inflamed region or in case of cancer cells barricade the movement of malignant cells thereby preventing further spread to the surrounding areas. This understanding can be further applied to design appropriate drugs which act specifically to maintain a proper BM/BM like intercellular matrix composition.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Since the 1980 s, laminin-1 has been linked to regeneration of the central nervous system (CNS) and promotion of neuronal migration and axon guidance during CNS development. In this thesis, we clarify the role of γ1 laminin and its KDI tripeptide in development of human embryonic spinal cord, in regeneration of adult rat spinal cord injury (SCI), in kainic acid-induced neuronal death, and in the spinal cord tissue of amyotrophic lateral sclerosis (ALS). We demonstrated that γ1 laminin together with α1, β1, and β3 laminins localize at the floor plate region in human embryonic spinal cord. This localization of γ1 laminin is in spatial and temporal correlation with development of the spinal cord and indicates that γ1 laminin may participate in commissural axon guidance during the embryonic development of the human CNS. With in vitro studies using the Matrigel culture system, we demonstrated that the KDI tripeptide of γ1 laminin provides a chemotrophic guidance cue for neurites of the human embryonic dorsal spinal cord, verifying the functional ability of γ1 laminin to guide commissural axons. Results from our experimental SCI model demonstrate that the KDI tripeptide enhanced functional recovery and promoted neurite outgrowth across the mechanically injured area in the adult rat spinal cord. Furthermore, our findings indicate that the KDI tripeptide as a non-competitive inhibitor of the ionotropic glutamate receptors can provide when administered in adequate concentrations an effective method to protect neurons against glutamate-induced excitotoxic cell death. Human postmortem samples were used to study motor neuron disease, ALS (IV), and the study revealed that in human ALS spinal cord, γ1 laminin was selectively over-expressed by reactive astrocytes, and that this over-expression may correlate with disease severity. The multiple ways by which γ1 laminin and its KDI tripeptide provide neurotrophic protection and enhance neuronal viability suggest that the over-expression of γ1 laminin may be a glial attempt to provide protection for neurons against ALS pathology. The KDI tripeptide is effective therapeutically thus far in animal models only. However, because KDI containing γ1 laminin exists naturally in the human CNS, KDI therapies are unlikely to be toxic or allergenic. Results from our animal models are encouraging, with no toxic side-effects detected even at high concentrations, but the ultimate confirmation can be achieved only after clinical trials. More research is still needed until the KDI tripeptide is refined into a clinically applicable method to treat various neurological disorders.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Autonomous mission control, unlike automatic mission control which is generally pre-programmed to execute an intended mission, is guided by the philosophy of carrying out a complete mission on its own through online sensing, information processing, and control reconfiguration. A crucial cornerstone of this philosophy is the capability of intelligence and of information sharing between unmanned aerial vehicles (UAVs) or with a central controller through secured communication links. Though several mission control algorithms, for single and multiple UAVs, have been discussed in the literature, they lack a clear definition of the various autonomous mission control levels. In the conventional system, the ground pilot issues the flight and mission control command to a UAV through a command data link and the UAV transmits intelligence information, back to the ground pilot through a communication link. Thus, the success of the mission depends entirely on the information flow through a secured communication link between ground pilot and the UAV In the past, mission success depended on the continuous interaction of ground pilot with a single UAV, while present day applications are attempting to define mission success through efficient interaction of ground pilot with multiple UAVs. However, the current trend in UAV applications is expected to lead to a futuristic scenario where mission success would depend only on interaction among UAV groups with no interaction with any ground entity. However, to reach this capability level, it is necessary to first understand the various levels of autonomy and the crucial role that information and communication plays in making these autonomy levels possible. This article presents a detailed framework of UAV autonomous mission control levels in the context of information flow and communication between UAVs and UAV groups for each level of autonomy.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

One of the major challenges in the treatment of lung cancer is the development of drug resistance. This represents a major obstacle in the treatment of patients, limiting the efficacy of both conventional chemotherapy and biological therapies. Deciphering the mechanisms of resistance is critical to further understanding the multifactorial pathways involved, and in developing more specific targeted treatments. To date, numerous studies have reported the potential role of microRNAs (miRNAs) in resistance to various cancer treatments. MicroRNAs are a family of small non-coding RNAs that regulate gene expression by sequence-specific targeting of mRNAs causing translational repression or mRNA degradation. More than 1200 validated human miRNAs have been identified to date. While as little as one miRNA can regulate hundreds of targets, a single target can also be affected by multiple miRNAs. Evidence suggests that dysregulation of specific miRNAs may be involved in the acquisition of resistance to a number of cancer treatments, thereby modulating the sensitivity of cancer cells to such therapies. Therefore, targeting miRNAs may be an attractive strategy for developing novel and more effective individualized therapies, improving drug efficiency, and for predicting patient response to different treatments. In this review, we provide an overview on the role of miRNAs in resistance to current lung cancer therapies and novel biological agents.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The insulin‑like growth factor 1 receptor (IGF1R) pathway plays an important role in the pathogenesis of non‑small cell lung cancer (NSCLC) and also provides a mechanism of resistance to targeted therapies. IGF1R is therefore an ideal therapeutic target and several inhibitors have entered clinical trials. However, thus far the response to these inhibitors has been poor, highlighting the importance of predictive biomarkers to identify patient cohorts who will benefit from these targeted agents. It is well‑documented that mutations and/or deletions in the epidermal growth factor receptor (EGFR) tyrosine kinase (TK) domain predict sensitivity of NSCLC patients to EGFR TK inhibitors. Single‑nucleotide polymorphisms (SNPs) in the IGF pathway have been associated with disease, including breast and prostate cancer. The aim of the present study was to elucidate whether the IGF1R TK domain harbours SNPs, somatic mutations or deletions in NSCLC patients and correlates the mutation status to patient clinicopathological data and prognosis. Initially 100 NSCLC patients were screened for mutations/deletions in the IGF1R TK domain (exons 16‑21) by sequencing analysis. Following the identification of SNP rs2229765, a further 98 NSCLC patients and 866 healthy disease‑free control patients were genotyped using an SNP assay. The synonymous SNP (rs2229765) was the only aberrant base change identified in the IGF1R TK domain of 100 NSCLC patients initially analysed. SNP rs2229765 was detected in exon 16 and was found to have no significant association between IGF1R expression and survival. The GA genotype was identified in 53.5 and 49.4% of NSCLC patients and control individuals, respectively. No significant difference was found in the genotype (P=0.5487) or allele (P=0.9082) frequencies between the case and control group. The present findings indicate that in contrast to the EGFR TK domain, the IGF1R TK domain is not frequently mutated in NSCLC patients. The synonymous SNP (rs2229765) had no significant association between IGF1R expression and survival in the cohort of NSCLC patients.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Magmas, a conserved mammalian protein essential for eukaryotic development, is overexpressed in prostate carcinomas and cells exposed to granulocyte-macrophage colony-stimulating factor (GM-CSF). Reduced Magmas expression resulted in decreased proliferative rates in cultured cells. However, the cellular function of Magmas is still elusive. In this report, we have showed that human Magmas is an ortholog of Saccharomyces cerevisiae Pam16 having similar functions and is critical for protein translocation across mitochondrial inner membrane. Human Magmas shows a complete growth complementation of delta pam16 yeast cells at all temperatures. On the basis of our analysis, we report that Magmas localizes into mitochondria and is peripherally associated with inner mitochondrial membrane in yeast and humans. Magmas forms a stable subcomplex with J-protein Pam18 or DnaJC19 through its C-terminal region and is tethered to TIM23 complex of yeast and humans. Importantly, amino acid alterations in Magmas leads to reduced stability of the subcomplex with Pam18 that results in temperature sensitivity and in vivo protein translocation defects in yeast cells. These observations highlight the central role of Magmas in protein import and mitochondria biogenesis. In humans, absence of a functional DnaJC19 leads to dilated cardiac myophathic syndrome (DCM), a genetic disorder with characteristic features of cardiac myophathy and neurodegeneration. We propose that the mutations resulting in decreased stability of functional Magmas:DnaJC19 subcomplex at human TIM23 channel leads to impaired protein import and cellular respiration in DCM patients. Together, we propose a model showing how Magmas:DnaJC19 subcomplex is associated with TIM23 complex and thus regulates mitochondrial import process.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This research analyses opinions on the system of social welfare services from the point of view of clients and the public in general in Finland. The approach is quantitative, drawing on theories of the welfare-state tradition. The data used comes from the comprehensive Welfare and Services in Finland survey compiled by STAKES. While previous research on the welfare state has predominantly focused on surveying public opinion on social protection, this research focuses on social welfare services. The main focus of this research is on publicly funded care provided by municipal social welfare services. In this research, social welfare services include child day care, services for people with disabilities, home-help services, counselling by social workers and social assistance. The research considered in particular whether the clients or the population has different opinions towards social welfare services or social benefits. In addition, the research partly covers areas of informal care provided by family and friends. The research material consisted of the STAKES Welfare and Services in Finland survey. The data was compiled in 2004 and 2006 by Statistics Finland. The research comprises five articles. Additional data have been extracted from social welfare statistics and registers. Multiple approaches were applied in the survey on welfare and services the methods in this research included interviews by phone and mail, and register data. The sample size was 5 810 people in 2004 and 5 798 in 2006. The response rates were 82.7% and 83.7%, respectively. The results indicate that a large majority (90%) of the Finnish population is of the opinion that the public sector should bear the main responsibility for organising social and health services. The system of social welfare services and its personnel have strong public support 73% and 80% respectively. However, new and even negative tones have emerged in the Finnish debate on social welfare services. Women are increasingly critical of the performance of social welfare services and the level of social protection. Furthermore, this study shows that women more often than men wish to see an increase in the amount of privately organised social welfare services. Another group critical of the performance of social welfare services are pensioners. People who had used social welfare services were more critical than those who had not used them. Thus, the severest criticism was received from the groups who use and gain most from public services and benefits. However, the education and income variables identified in earlier studies no longer formed a significant dividing line, although people with higher education tend to foster a more positive view of the performance of social welfare services as well as the level of social protection. Income differences did not bear any significance, that is, belonging to a high or low income group was not a determining factor in the attitude towards social welfare services or social benefits. According to the research, family and friends still form an informal yet significant support network in people's everyday lives, and its importance has not been diminished by services provided by the welfare state. The Finnish public considers child day care the most reliable form of social welfare services. Indeed, child day care has become the most universal sector of our system of social welfare services. Other services that instil confidence included counselling by social workers and services for people with disabilities. On the other hand, social assistance and home-help services received negative feedback. The negative views were based on a number of arguments. One argument contends that the home-help service system, which was originally intended for universal use, is crumbling. The preventive role of home-help services has been reduced. These results mirror the increasingly popular opinion that social welfare services are not produced for all those who need them, but to an increasing extent for a select few of them. Municipalities are struggling with their finances and this, combined with negative publicity, has damaged the public's trust in some municipal social welfare services. A welfare state never achieves a stable condition, but must develop over time, as the world around it changes. Following the 1990's recession, we are now in a position where we can start to develop a system that responds to the needs of the next generation. Study results indicating new areas of dissatisfaction reflect the need to develop and improve the services provided. It is also increasingly essential that social welfare services pay attention to the opinions of clients and the public. Should the gap between opinions and actual activities increase, the legitimacy of the whole system would be questioned. Currently, the vast majority of Finns consider the system of social welfare services adequate, which provides us with the continuity required to maintain and improve client-oriented and reasonably priced social welfare services. Paying attention to the signals given by clients and the general public, and reacting to them accordingly, will also secure the development and legitimacy of the system in the future.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

SLC22A18, a poly-specific organic cation transporter, is paternally imprinted in humans and mice. It shows loss-of-heterozygosity in childhood and adult tumors, and gain-of-imprinting in hepatocarcinomas and breast cancers. Despite the importance of this gene, its transcriptional regulation has not been studied, and the promoter has not yet been characterized. We therefore set out to identify the potential cis-regulatory elements including the promoter of this gene. The luciferase reporter assay in human cells indicated that a region from -120 by to +78 by is required for the core promoter activity. No consensus TATA or CHAT boxes were found in this region, but two Sp1 binding sites were conserved in human, chimpanzee, mouse and rat. Mutational analysis of the two Sp1 sites suggested their requirement for the promoter activity. Chromatin-immunoprecipitation showed binding of Sp1 to the promoter region in vivo. Overexpression of Sp1 in Drosophila Sp1-null SL2 cells suggested that Sp1 is the transactivator of the promoter. The human core promoter was functional in mouse 3T3 and monkey COS7 cells. We found a CpG island which spanned the core promoter and exon 1. COBRA technique did not reveal promoter methylation in 10 normal oral tissues, 14 oral tumors, and two human cell lines HuH7 and A549. This study provides the first insight into the mechanism that controls expression of this imprinted tumor suppressor gene. A COBRA-based assay has been developed to look for promoter methylation in different cancers. The present data will help to understand the regulation of this gene and its role in tumorigenesis. (C) 2008 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

SLC22A18, a poly-specific organic cation transporter, is paternally imprinted in humans and mice. It shows loss-of-heterozygosity in childhood and adult tumors, and gain-of-imprinting in hepatocarcinomas and breast cancers. Despite the importance of this gene, its transcriptional regulation has not been studied, and the promoter has not yet been characterized. We therefore set out to identify the potential cis-regulatory elements including the promoter of this gene. The luciferase reporter assay in human cells indicated that a region from -120 by to +78 by is required for the core promoter activity. No consensus TATA or CHAT boxes were found in this region, but two Sp1 binding sites were conserved in human, chimpanzee, mouse and rat. Mutational analysis of the two Sp1 sites suggested their requirement for the promoter activity. Chromatin-immunoprecipitation showed binding of Sp1 to the promoter region in vivo. Overexpression of Sp1 in Drosophila Sp1-null SL2 cells suggested that Sp1 is the transactivator of the promoter. The human core promoter was functional in mouse 3T3 and monkey COS7 cells. We found a CpG island which spanned the core promoter and exon 1. COBRA technique did not reveal promoter methylation in 10 normal oral tissues, 14 oral tumors, and two human cell lines HuH7 and A549. This study provides the first insight into the mechanism that controls expression of this imprinted tumor suppressor gene. A COBRA-based assay has been developed to look for promoter methylation in different cancers. The present data will help to understand the regulation of this gene and its role in tumorigenesis. (C) 2008 Elsevier B.V. All rights reserved.