860 resultados para Motion-based input
Resumo:
La Organización Mundial de la Salud (OMS) prevé que para el año 2020, el Daño Cerebral Adquirido (DCA) estará entre las 10 causas más comunes de discapacidad. Estas lesiones, dadas sus consecuencias físicas, sensoriales, cognitivas, emocionales y socioeconómicas, cambian dramáticamente la vida de los pacientes y sus familias. Las nuevas técnicas de intervención precoz y el desarrollo de la medicina intensiva en la atención al DCA han mejorado notablemente la probabilidad de supervivencia. Sin embargo, hoy por hoy, las lesiones cerebrales no tienen ningún tratamiento quirúrgico que tenga por objetivo restablecer la funcionalidad perdida, sino que las terapias rehabilitadoras se dirigen hacia la compensación de los déficits producidos. Uno de los objetivos principales de la neurorrehabilitación es, por tanto, dotar al paciente de la capacidad necesaria para ejecutar las Actividades de Vida Diaria (AVDs) necesarias para desarrollar una vida independiente, siendo fundamentales aquellas en las que la Extremidad Superior (ES) está directamente implicada, dada su gran importancia a la hora de la manipulación de objetos. Con la incorporación de nuevas soluciones tecnológicas al proceso de neurorrehabilitación se pretende alcanzar un nuevo paradigma centrado en ofrecer una práctica personalizada, monitorizada y ubicua con una valoración continua de la eficacia y de la eficiencia de los procedimientos y con capacidad de generar conocimientos que impulsen la ruptura del paradigma de actual. Los nuevos objetivos consistirán en minimizar el impacto de las enfermedades que afectan a la capacidad funcional de las personas, disminuir el tiempo de incapacidad y permitir una gestión más eficiente de los recursos. Estos objetivos clínicos, de gran impacto socio-económico, sólo pueden alcanzarse desde una apuesta decidida en nuevas tecnologías, metodologías y algoritmos capaces de ocasionar la ruptura tecnológica necesaria que permita superar las barreras que hasta el momento han impedido la penetración tecnológica en el campo de la rehabilitación de manera universal. De esta forma, los trabajos y resultados alcanzados en la Tesis son los siguientes: 1. Modelado de AVDs: como paso previo a la incorporación de ayudas tecnológicas al proceso rehabilitador, se hace necesaria una primera fase de modelado y formalización del conocimiento asociado a la ejecución de las actividades que se realizan como parte de la terapia. En particular, las tareas más complejas y a su vez con mayor repercusión terapéutica son las AVDs, cuya formalización permitirá disponer de modelos de movimiento sanos que actuarán de referencia para futuros desarrollos tecnológicos dirigidos a personas con DCA. Siguiendo una metodología basada en diagramas de estados UML se han modelado las AVDs 'servir agua de una jarra' y 'coger un botella' 2. Monitorización ubícua del movimiento de la ES: se ha diseñado, desarrollado y validado un sistema de adquisición de movimiento basado en tecnología inercial que mejora las limitaciones de los dispositivos comerciales actuales (coste muy elevado e incapacidad para trabajar en entornos no controlados); los altos coeficientes de correlación y los bajos niveles de error obtenidos en los corregistros llevados a cabo con el sistema comercial BTS SMART-D demuestran la alta precisión del sistema. También se ha realizado un trabajo de investigación exploratorio de un sistema de captura de movimiento de coste muy reducido basado en visión estereoscópica, habiéndose detectado los puntos clave donde se hace necesario incidir desde un punto de vista tecnológico para su incorporación en un entorno real 3. Resolución del Problema Cinemático Inverso (PCI): se ha diseñado, desarrollado y validado una solución al PCI cuando el manipulador se corresponde con una ES humana estudiándose 2 posibles alternativas, una basada en la utilización de un Perceptrón Multicapa (PMC) y otra basada en sistemas Artificial Neuro-Fuzzy Inference Systems (ANFIS). La validación, llevada a cabo utilizando información relativa a los modelos disponibles de AVDs, indica que una solución basada en un PMC con 3 neuronas en la capa de entrada, una capa oculta también de 3 neuronas y una capa de salida con tantas neuronas como Grados de Libertad (GdLs) tenga el modelo de la ES, proporciona resultados, tanto de precisión como de tiempo de cálculo, que la hacen idónea para trabajar en sistemas con requisitos de tiempo real 4. Control inteligente assisted-as-needed: se ha diseñado, desarrollado y validado un algoritmo de control assisted-as-needed para una ortesis robótica con capacidades de actuación anticipatoria de la que existe un prototipo implementado en la actualidad. Los resultados obtenidos demuestran cómo el sistema es capaz de adaptarse al perfil disfuncional del paciente activando la ayuda en instantes anteriores a la ocurrencia de movimientos incorrectos. Esta estrategia implica un aumento en la participación del paciente y, por tanto, en su actividad muscular, fomentándose los procesos la plasticidad cerebral responsables del reaprendizaje o readaptación motora 5. Simuladores robóticos para planificación: se propone la utilización de un simulador robótico assisted-as-needed como herramienta de planificación de sesiones de rehabilitación personalizadas y con un objetivo clínico marcado en las que interviene una ortesis robotizada. Los resultados obtenidos evidencian como, tras la ejecución de ciertos algoritmos sencillos, es posible seleccionar automáticamente una configuración para el algoritmo de control assisted-as-needed que consigue que la ortesis se adapte a los criterios establecidos desde un punto de vista clínico en función del paciente estudiado. Estos resultados invitan a profundizar en el desarrollo de algoritmos más avanzados de selección de parámetros a partir de baterías de simulaciones Estos trabajos han servido para corroborar las hipótesis de investigación planteadas al inicio de la misma, permitiendo, asimismo, la apertura de nuevas líneas de investigación. Summary The World Health Organization (WHO) predicts that by the year 2020, Acquired Brain Injury (ABI) will be among the ten most common ailments. These injuries dramatically change the life of the patients and their families due to their physical, sensory, cognitive, emotional and socio-economic consequences. New techniques of early intervention and the development of intensive ABI care have noticeably improved the survival rate. However, in spite of these advances, brain injuries still have no surgical or pharmacological treatment to re-establish the lost functions. Neurorehabilitation therapies address this problem by restoring, minimizing or compensating the functional alterations in a person disabled because of a nervous system injury. One of the main objectives of Neurorehabilitation is to provide patients with the capacity to perform specific Activities of the Daily Life (ADL) required for an independent life, especially those in which the Upper Limb (UL) is directly involved due to its great importance in manipulating objects within the patients' environment. The incorporation of new technological aids to the neurorehabilitation process tries to reach a new paradigm focused on offering a personalized, monitored and ubiquitous practise with continuous assessment of both the efficacy and the efficiency of the procedures and with the capacity of generating new knowledge. New targets will be to minimize the impact of the sicknesses affecting the functional capabilitiies of the subjects, to decrease the time of the physical handicap and to allow a more efficient resources handling. These targets, of a great socio-economic impact, can only be achieved by means of new technologies and algorithms able to provoke the technological break needed to beat the barriers that are stopping the universal penetration of the technology in the field of rehabilitation. In this way, this PhD Thesis has achieved the following results: 1. ADL Modeling: as a previous step to the incorporation of technological aids to the neurorehabilitation process, it is necessary a first modelling and formalization phase of the knowledge associated to the execution of the activities that are performed as a part of the therapy. In particular, the most complex and therapeutically relevant tasks are the ADLs, whose formalization will produce healthy motion models to be used as a reference for future technological developments. Following a methodology based on UML state-chart diagrams, the ADLs 'serving water from a jar' and 'picking up a bottle' have been modelled 2. Ubiquitous monitoring of the UL movement: it has been designed, developed and validated a motion acquisition system based on inertial technology that improves the limitations of the current devices (high monetary cost and inability of working within uncontrolled environments); the high correlation coefficients and the low error levels obtained throughout several co-registration sessions with the commercial sys- tem BTS SMART-D show the high precision of the system. Besides an exploration of a very low cost stereoscopic vision-based motion capture system has been carried out and the key points where it is necessary to insist from a technological point of view have been detected 3. Inverse Kinematics (IK) problem solving: a solution to the IK problem has been proposed for a manipulator that corresponds to a human UL. This solution has been faced by means of two different alternatives, one based on a Mulilayer Perceptron (MLP) and another based on Artificial Neuro-Fuzzy Inference Systems (ANFIS). The validation of these solutions, carried out using the information regarding the previously generated motion models, indicate that a MLP-based solution, with an architecture consisting in 3 neurons in the input layer, one hidden layer of 3 neurons and an output layer with as many neurons as the number of Degrees of Freedom (DoFs) that the UL model has, is the one that provides the best results both in terms of precission and in terms of processing time, making in idoneous to be integrated within a system with real time restrictions 4. Assisted-as-needed intelligent control: an assisted-as-needed control algorithm with anticipatory actuation capabilities has been designed, developed and validated for a robotic orthosis of which there is an already implemented prototype. Obtained results demonstrate that the control system is able to adapt to the dysfunctional profile of the patient by triggering the assistance right before an incorrect movement is going to take place. This strategy implies an increase in the participation of the patients and in his or her muscle activity, encouraging the neural plasticity processes in charge of the motor learning 5. Planification with a robotic simulator: in this work a robotic simulator is proposed as a planification tool for personalized rehabilitation sessions under a certain clinical criterium. Obtained results indicate that, after the execution of simple parameter selection algorithms, it is possible to automatically choose a specific configuration that makes the assisted-as-needed control algorithm to adapt both to the clinical criteria and to the patient. These results invite researchers to work in the development of more complex parameter selection algorithms departing from simulation batteries Obtained results have been useful to corroborate the hypotheses set out at the beginning of this PhD Thesis. Besides, they have allowed the creation of new research lines in all the studied application fields.
Resumo:
There are many the requirements that modern power converters should fulfill. Most of the applications where these converters are used, demand smaller converters with high efficiency, improved power density and a fast dynamic response. For instance, loads like microprocessors demand aggressive current steps with very high slew rates (100A/mus and higher); besides, during these load steps, the supply voltage of the microprocessor should be kept within tight limits in order to ensure its correct performance. The accomplishment of these requirements is not an easy task; complex solutions like advanced topologies - such as multiphase converters- as well as advanced control strategies are often needed. Besides, it is also necessary to operate the converter at high switching frequencies and to use capacitors with high capacitance and low ESR. Improving the dynamic response of power converters does not rely only on the control strategy but also the power topology should be suited to enable a fast dynamic response. Moreover, in later years, a fast dynamic response does not only mean accomplishing fast load steps but output voltage steps are gaining importance as well. At least, two applications that require fast voltage changes can be named: Low power microprocessors. In these devices, the voltage supply is changed according to the workload and the operating frequency of the microprocessor is changed at the same time. An important reduction in voltage dependent losses can be achieved with such changes. This technique is known as Dynamic Voltage Scaling (DVS). Another application where important energy savings can be achieved by means of changing the supply voltage are Radio Frequency Power Amplifiers. For example, RF architectures based on ‘Envelope Tracking’ and ‘Envelope Elimination and Restoration’ techniques can take advantage of voltage supply modulation and accomplish important energy savings in the power amplifier. However, in order to achieve these efficiency improvements, a power converter with high efficiency and high enough bandwidth (hundreds of kHz or even tens of MHz) is necessary in order to ensure an adequate supply voltage. The main objective of this Thesis is to improve the dynamic response of DC-DC converters from the point of view of the power topology. And the term dynamic response refers both to the load steps and the voltage steps; it is also interesting to modulate the output voltage of the converter with a specific bandwidth. In order to accomplish this, the question of what is it that limits the dynamic response of power converters should be answered. Analyzing this question leads to the conclusion that the dynamic response is limited by the power topology and specifically, by the filter inductance of the converter which is found in series between the input and the output of the converter. The series inductance is the one that determines the gain of the converter and provides the regulation capability. Although the energy stored in the filter inductance enables the regulation and the capability of filtering the output voltage, it imposes a limitation which is the concern of this Thesis. The series inductance stores energy and prevents the current from changing in a fast way, limiting the slew rate of the current through this inductor. Different solutions are proposed in the literature in order to reduce the limit imposed by the filter inductor. Many publications proposing new topologies and improvements to known topologies can be found in the literature. Also, complex control strategies are proposed with the objective of improving the dynamic response in power converters. In the proposed topologies, the energy stored in the series inductor is reduced; examples of these topologies are Multiphase converters, Buck converter operating at very high frequency or adding a low impedance path in parallel with the series inductance. Control techniques proposed in the literature, focus on adjusting the output voltage as fast as allowed by the power stage; examples of these control techniques are: hysteresis control, V 2 control, and minimum time control. In some of the proposed topologies, a reduction in the value of the series inductance is achieved and with this, the energy stored in this magnetic element is reduced; less stored energy means a faster dynamic response. However, in some cases (as in the high frequency Buck converter), the dynamic response is improved at the cost of worsening the efficiency. In this Thesis, a drastic solution is proposed: to completely eliminate the series inductance of the converter. This is a more radical solution when compared to those proposed in the literature. If the series inductance is eliminated, the regulation capability of the converter is limited which can make it difficult to use the topology in one-converter solutions; however, this topology is suitable for power architectures where the energy conversion is done by more than one converter. When the series inductor is eliminated from the converter, the current slew rate is no longer limited and it can be said that the dynamic response of the converter is independent from the switching frequency. This is the main advantage of eliminating the series inductor. The main objective, is to propose an energy conversion strategy that is done without series inductance. Without series inductance, no energy is stored between the input and the output of the converter and the dynamic response would be instantaneous if all the devices were ideal. If the energy transfer from the input to the output of the converter is done instantaneously when a load step occurs, conceptually it would not be necessary to store energy at the output of the converter (no output capacitor COUT would be needed) and if the input source is ideal, the input capacitor CIN would not be necessary. This last feature (no CIN with ideal VIN) is common to all power converters. However, when the concept is actually implemented, parasitic inductances such as leakage inductance of the transformer and the parasitic inductance of the PCB, cannot be avoided because they are inherent to the implementation of the converter. These parasitic elements do not affect significantly to the proposed concept. In this Thesis, it is proposed to operate the converter without series inductance in order to improve the dynamic response of the converter; however, on the other side, the continuous regulation capability of the converter is lost. It is said continuous because, as it will be explained throughout the Thesis, it is indeed possible to achieve discrete regulation; a converter without filter inductance and without energy stored in the magnetic element, is capable to achieve a limited number of output voltages. The changes between these output voltage levels are achieved in a fast way. The proposed energy conversion strategy is implemented by means of a multiphase converter where the coupling of the phases is done by discrete two-winding transformers instead of coupledinductors since transformers are, ideally, no energy storing elements. This idea is the main contribution of this Thesis. The feasibility of this energy conversion strategy is first analyzed and then verified by simulation and by the implementation of experimental prototypes. Once the strategy is proved valid, different options to implement the magnetic structure are analyzed. Three different discrete transformer arrangements are studied and implemented. A converter based on this energy conversion strategy would be designed with a different approach than the one used to design classic converters since an additional design degree of freedom is available. The switching frequency can be chosen according to the design specifications without penalizing the dynamic response or the efficiency. Low operating frequencies can be chosen in order to favor the efficiency; on the other hand, high operating frequencies (MHz) can be chosen in order to favor the size of the converter. For this reason, a particular design procedure is proposed for the ‘inductorless’ conversion strategy. Finally, applications where the features of the proposed conversion strategy (high efficiency with fast dynamic response) are advantageus, are proposed. For example, in two-stage power architectures where a high efficiency converter is needed as the first stage and there is a second stage that provides the fine regulation. Another example are RF power amplifiers where the voltage is modulated following an envelope reference in order to save power; in this application, a high efficiency converter, capable of achieving fast voltage steps is required. The main contributions of this Thesis are the following: The proposal of a conversion strategy that is done, ideally, without storing energy in the magnetic element. The validation and the implementation of the proposed energy conversion strategy. The study of different magnetic structures based on discrete transformers for the implementation of the proposed energy conversion strategy. To elaborate and validate a design procedure. To identify and validate applications for the proposed energy conversion strategy. It is important to remark that this work is done in collaboration with Intel. The particular features of the proposed conversion strategy enable the possibility of solving the problems related to microprocessor powering in a different way. For example, the high efficiency achieved with the proposed conversion strategy enables it as a good candidate to be used for power conditioning, as a first stage in a two-stage power architecture for powering microprocessors.
Resumo:
INTRODUCTION: Motion metrics have become an important source of information when addressing the assessment of surgical expertise. However, their direct relationship with the different surgical skills has not been fully explored. The purpose of this study is to investigate the relevance of motion-related metrics in the evaluation processes of basic psychomotor laparoscopic skills, as well as their correlation with the different abilities sought to measure. METHODS: A framework for task definition and metric analysis is proposed. An explorative survey was first conducted with a board of experts to identify metrics to assess basic psychomotor skills. Based on the output of that survey, three novel tasks for surgical assessment were designed. Face and construct validation study was performed, with focus on motion-related metrics. Tasks were performed by 42 participants (16 novices, 22 residents and 4 experts). Movements of the laparoscopic instruments were registered with the TrEndo tracking system and analyzed. RESULTS: Time, path length and depth showed construct validity for all three tasks. Motion smoothness and idle time also showed validity for tasks involving bi-manual coordination and tasks requiring a more tactical approach respectively. Additionally, motion smoothness and average speed showed a high internal consistency, proving them to be the most task-independent of all the metrics analyzed. CONCLUSION: Motion metrics are complementary and valid for assessing basic psychomotor skills, and their relevance depends on the skill being evaluated. A larger clinical implementation, combined with quality performance information, will give more insight on the relevance of the results shown in this study.
Resumo:
In this work, a fiber-based optical powering (or power-by-light) system capable of providing more than 1 W is developed. The prototype was used in order to power a shunt regulator for controlling the activation and deactivation of solar panels in satellites. The work involves the manufacture of a light receiver (a GaAs multiple photovoltaic converter (MPC)), a power conditioning block, and a regulator and the implementation and characterization of the whole system. The MPC, with an active area of just 3.1 mm2, was able to supply 1 W at 5 V with an efficiency of 30%. The maximum measured device efficiency was over 40% at an input power (Pin) of 0.5 W. Open circuit voltage over 7 V was measured for Pin over 0.5 W. A system optoelectronic efficiency (including the optical fiber, connectors, and MPC) of 27% was measured at an output power (Pout) of 1 W. At Pout = 0.2 W, the efficiency was as high as 36%. The power conditioning block and the regulator were successfully powered with the system. The maximum supplied power in steady state was 0.2 W, whereas in transient state, it reached 0.44 W. The paper also describes the characterization of the system within the temperature range going from -70 to +100?°C.
Resumo:
Adaptive embedded systems are required in various applications. This work addresses these needs in the area of adaptive image compression in FPGA devices. A simplified version of an evolution strategy is utilized to optimize wavelet filters of a Discrete Wavelet Transform algorithm. We propose an adaptive image compression system in FPGA where optimized memory architecture, parallel processing and optimized task scheduling allow reducing the time of evolution. The proposed solution has been extensively evaluated in terms of the quality of compression as well as the processing time. The proposed architecture reduces the time of evolution by 44% compared to our previous reports while maintaining the quality of compression unchanged with respect to existing implementations. The system is able to find an optimized set of wavelet filters in less than 2 min whenever the input type of data changes.
Resumo:
Images acquired during free breathing using first-pass gadolinium-enhanced myocardial perfusion magnetic resonance imaging (MRI) exhibit a quasiperiodic motion pattern that needs to be compensated for if a further automatic analysis of the perfusion is to be executed. In this work, we present a method to compensate this movement by combining independent component analysis (ICA) and image registration: First, we use ICA and a time?frequency analysis to identify the motion and separate it from the intensity change induced by the contrast agent. Then, synthetic reference images are created by recombining all the independent components but the one related to the motion. Therefore, the resulting image series does not exhibit motion and its images have intensities similar to those of their original counterparts. Motion compensation is then achieved by using a multi-pass image registration procedure. We tested our method on 39 image series acquired from 13 patients, covering the basal, mid and apical areas of the left heart ventricle and consisting of 58 perfusion images each. We validated our method by comparing manually tracked intensity profiles of the myocardial sections to automatically generated ones before and after registration of 13 patient data sets (39 distinct slices). We compared linear, non-linear, and combined ICA based registration approaches and previously published motion compensation schemes. Considering run-time and accuracy, a two-step ICA based motion compensation scheme that first optimizes a translation and then for non-linear transformation performed best and achieves registration of the whole series in 32 ± 12 s on a recent workstation. The proposed scheme improves the Pearsons correlation coefficient between manually and automatically obtained time?intensity curves from .84 ± .19 before registration to .96 ± .06 after registration
Resumo:
We present a computing model based on the DNA strand displacement technique which performs Bayesian inference. The model will take single stranded DNA as input data, representing the presence or absence of a specific molecular signal (evidence). The program logic encodes the prior probability of a disease and the conditional probability of a signal given the disease playing with a set of different DNA complexes and their ratios. When the input and program molecules interact, they release a different pair of single stranded DNA species whose relative proportion represents the application of Bayes? Law: the conditional probability of the disease given the signal. The models presented in this paper can empower the application of probabilistic reasoning in genetic diagnosis in vitro.
Resumo:
In this paper, we describe new results and improvements to a lan-guage identification (LID) system based on PPRLM previously introduced in [1] and [2]. In this case, we use as parallel phone recognizers the ones provided by the Brno University of Technology for Czech, Hungarian, and Russian lan-guages, and instead of using traditional n-gram language models we use a lan-guage model that is created using a ranking with the most frequent and discrim-inative n-grams. In this language model approach, the distance between the ranking for the input sentence and the ranking for each language is computed, based on the difference in relative positions for each n-gram. This approach is able to model reliably longer span information than in traditional language models obtaining more reliable estimations. We also describe the modifications that we have being introducing along the time to the original ranking technique, e.g., different discriminative formulas to establish the ranking, variations of the template size, the suppression of repeated consecutive phones, and a new clus-tering technique for the ranking scores. Results show that this technique pro-vides a 12.9% relative improvement over PPRLM. Finally, we also describe re-sults where the traditional PPRLM and our ranking technique are combined.
Resumo:
INTRODUCTION: Objective assessment of motor skills has become an important challenge in minimally invasive surgery (MIS) training.Currently, there is no gold standard defining and determining the residents' surgical competence.To aid in the decision process, we analyze the validity of a supervised classifier to determine the degree of MIS competence based on assessment of psychomotor skills METHODOLOGY: The ANFIS is trained to classify performance in a box trainer peg transfer task performed by two groups (expert/non expert). There were 42 participants included in the study: the non-expert group consisted of 16 medical students and 8 residents (< 10 MIS procedures performed), whereas the expert group consisted of 14 residents (> 10 MIS procedures performed) and 4 experienced surgeons. Instrument movements were captured by means of the Endoscopic Video Analysis (EVA) tracking system. Nine motion analysis parameters (MAPs) were analyzed, including time, path length, depth, average speed, average acceleration, economy of area, economy of volume, idle time and motion smoothness. Data reduction was performed by means of principal component analysis, and then used to train the ANFIS net. Performance was measured by leave one out cross validation. RESULTS: The ANFIS presented an accuracy of 80.95%, where 13 experts and 21 non-experts were correctly classified. Total root mean square error was 0.88, while the area under the classifiers' ROC curve (AUC) was measured at 0.81. DISCUSSION: We have shown the usefulness of ANFIS for classification of MIS competence in a simple box trainer exercise. The main advantage of using ANFIS resides in its continuous output, which allows fine discrimination of surgical competence. There are, however, challenges that must be taken into account when considering use of ANFIS (e.g. training time, architecture modeling). Despite this, we have shown discriminative power of ANFIS for a low-difficulty box trainer task, regardless of the individual significances between MAPs. Future studies are required to confirm the findings, inclusion of new tasks, conditions and sample population.
Resumo:
The paper presents a method to analyze robust stability and transient performance of a distributed power system consisting of commercial converter modules interconnected through a common input filter. The method is based on the use of four transfer functions, which are measurable from the converter input and output terminals. It is shown that these parameters provide important information on the power module sensitivity to the interactions caused by the external impedances. Practical characterization for the described system structure is performed introducing special transfer functions utilized for the interactions assessment. Experimental results are provided to support the presented analysis procedure.
Resumo:
This paper proposes an automatic framework for the seamless integration of hardware accelerators, starting from an OpenMP-based application and an XML file describing the HW/SW partitioning. It extends a fully software architecture by generating and integrating the cores, along with the proper interfaces, and the code for scheduling and synchronization. Experimental results show that it is possible to validate different solutions only by varying the input code.
Resumo:
A method to study some neuronal functions, based on the use of the Feynman diagrams, employed in many-body theory, is reported. An equation obtained from the neuron cable theory is the basis for the method. The Green's function for this equation is obtained under some simple boundary conditions. An excitatory signal, with different conditions concerning high and pulse duration, is employed as input signal. Different responses have been obtained
Resumo:
Laser processing has been the tool of choice last years to develop improved concepts in contact formation for high efficiency crystalline silicon (c-Si) solar cells. New concepts based on standard laser fired contacts (LFC) or advanced laser doping (LD) techniques are optimal solutions for both the front and back contacts of a number of structures with growing interest in the c-Si PV industry. Nowadays, substantial efforts are underway to optimize these processes in order to be applied industrially in high efficiency concepts. However a critical issue in these devices is that, most of them, demand a very low thermal input during the fabrication sequence and a minimal damage of the structure during the laser irradiation process. Keeping these two objectives in mind, in this work we discuss the possibility of using laser-based processes to contact the rear side of silicon heterojunction (SHJ) solar cells in an approach fully compatible with the low temperature processing associated to these devices. First we discuss the possibility of using standard LFC techniques in the fabrication of SHJ cells on p-type substrates, studying in detail the effect of the laser wavelength on the contact quality. Secondly, we present an alternative strategy bearing in mind that a real challenge in the rear contact formation is to reduce the damage induced by the laser irradiation. This new approach is based on local laser doping techniques previously developed by our groups, to contact the rear side of p-type c-Si solar cells by means of laser processing before rear metallization of dielectric stacks containing Al2O3. In this work we demonstrate the possibility of using this new approach in SHJ cells with a distinct advantage over other standard LFC techniques.
Resumo:
El objetivo de esta investigación es desarrollar una metodología para estimar los potenciales impactos económicos y de transporte generados por la aplicación de políticas en el sector transporte. Los departamentos de transporte y otras instituciones gubernamentales relacionadas se encuentran interesadas en estos análisis debido a que son presentados comúnmente de forma errónea por la insuficiencia de datos o por la falta de metodologías adecuadas. La presente investigación tiene por objeto llenar este vacío haciendo un análisis exhaustivo de las técnicas disponibles que coincidan con ese propósito. Se ha realizado un análisis que ha identificado las diferencias cuando son aplicados para la valoración de los beneficios para el usuario o para otros efectos como aspectos sociales. Como resultado de ello, esta investigación ofrece un enfoque integrado que incluye un modelo Input-Output de múltiples regiones basado en la utilidad aleatoria (RUBMRIO), y un modelo de red de transporte por carretera. Este modelo permite la reproducción con mayor detalle y realismo del transporte de mercancías que por medio de su estructura sectorial identifica los vínculos de las compras y ventas inter-industriales dentro de un país utilizando los servicios del transporte de mercancías. Por esta razón, el modelo integrado es aplicable a diversas políticas de transporte. En efecto, el enfoque se ha aplicado para estudiar los efectos macroeconómicos regionales de la implementación de dos políticas diferentes en el sistema de transporte de mercancías de España, tales como la tarificación basada en la distancia recorrida por vehículo-kilómetro (€/km) aplicada a los vehículos del transporte de mercancías, y para la introducción de vehículos más largos y pesados de mercancías en la red de carreteras de España. El enfoque metodológico se ha evaluado caso por caso teniendo en cuenta una selección de la red de carreteras que unen las capitales de las regiones españolas. También se ha tenido en cuenta una dimensión económica a través de una tabla Input-Output de múltiples regiones (MRIO) y la base de datos de conteo de tráfico existente para realizar la validación del modelo. El enfoque integrado reproduce las condiciones de comercio observadas entre las regiones usando el sistema de transporte de mercancías por carretera, y que permite por comparación con los escenarios de políticas, determinar las contribuciones a los cambios distributivos y generativos. Así pues, el análisis estima los impactos económicos en cualquier región considerando los cambios en el Producto Interno Bruto (PIB) y el empleo. El enfoque identifica los cambios en el sistema de transporte a través de todos los caminos de la red de transporte a través de las medidas de efectividad (MOEs). Los resultados presentados en esta investigación proporcionan evidencia sustancial de que en la evaluación de las políticas de transporte, es necesario establecer un vínculo entre la estructura económica de las regiones y de los servicios de transporte. Los análisis muestran que para la mayoría de las regiones del país, los cambios son evidentes para el PIB y el empleo, ya que el comercio se fomenta o se inhibe. El enfoque muestra cómo el tráfico se desvía en ambas políticas, y también determina detalles de las emisiones de contaminantes en los dos escenarios. Además, las políticas de fijación de precios o de regulación de los sistemas de transporte de mercancías por carretera dirigidas a los productores y consumidores en las regiones promoverán transformaciones regionales afectando todo el país, y esto conduce a conclusiones diferentes. Así mismo, este enfoque integrado podría ser útil para evaluar otras políticas y otros países en todo el mundo. The purpose of this research is to develop a methodological approach aimed at assessing the potential economic and transportation impacts of transport policies. Transportation departments and other related government parties are interested in such analysis because it is commonly misrepresented for the insufficiency of data and suitable methodologies available. This research is directed at filling this gap by making a comprehensive analysis of the available techniques that match with that purpose. The differences when they are applied for the valuation of user benefits or for other impacts as social matters have been identified. As a result, this research presents an integrated approach which includes both a random utility-based multiregional Input-Output model (RUBMRIO), and a road transport network model. This model accounts for freight transport with more detail and realism because its commodity-based structure traces the linkages of inter-industry purchases and sales that use freight services within a given country. For this reason, the integrated model is applicable to various transport policies. In fact, the approach is applied to study the regional macroeconomic effects of implementing two different policies in the freight transport system of Spain, such as a distance-based charge in vehicle-kilometer (€/km) for Heavy Goods Vehicles (HGVs), and the introduction of Longer and Heavier Vehicles (LHVs) in the road network of Spain. The methodological approach has been evaluated on a case by case basis considering a selected road network of highways linking the capitals of the Spanish regions. It has also considered an economic dimension through a Multiregional Input Output Table (MRIO) and the existing traffic count database used in the model validation. The integrated approach replicates observed conditions of trade among regions using road freight transport systems that determine contributions to distributional and generative changes by comparison with policy scenarios. Therefore, the model estimates economic impacts in any given area by considering changes in Gross Domestic Product (GDP), employment (jobs), and in the transportation system across all paths of the transport network considering Measures of effectiveness (MOEs). The results presented in this research provide substantive evidence that in the assessment of transport policies it is necessary to establish a link between the economic structure of regions and the transportation services. The analysis shows that for most regions in the country, GDP and employment changes are noticeable when trade is encouraged or discouraged. This approach shows how traffic is diverted in both policies, and also provides details of the pollutant emissions in both scenarios. Furthermore, policies, such as pricing or regulation of road freight transportation systems, directed to producers and consumers in regions will promote different regional transformations across the country, and this lead to different conclusions. In addition, this integrated approach could be useful to assess other policies and countries worldwide.
Resumo:
There are a number of factors that contribute to the success of dental implant operations. Among others, is the choice of location in which the prosthetic tooth is to be implanted. This project offers a new approach to analyse jaw tissue for the purpose of selecting suitable locations for teeth implant operations. The application developed takes as input jaw computed tomography stack of slices and trims data outside the jaw area, which is the point of interest. It then reconstructs a three dimensional model of the jaw highlighting points of interest on the reconstructed model. On another hand, data mining techniques have been utilised in order to construct a prediction model based on an information dataset of previous dental implant operations with observed stability values. The goal is to find patterns within the dataset that would help predicting the success likelihood of an implant.