New laser-based approaches to improve the passivation and rear contact quality in high effiency crystalline silicon solar cells


Autoria(s): Molpeceres Alvarez, Carlos Luis; Colina Brito, Mónica; Muñoz Martín, David; Martín, Isidro; Ortega, Pablo; Sánchez, Isabel; Morales Furió, Miguel; Lauzurica Santiago, Sara; García Ballesteros, Juan J.; Voz, C.; López Rodríguez, Gema; Morales, Ana Belén; Alcubilla, R.
Data(s)

2013

Resumo

Laser processing has been the tool of choice last years to develop improved concepts in contact formation for high efficiency crystalline silicon (c-Si) solar cells. New concepts based on standard laser fired contacts (LFC) or advanced laser doping (LD) techniques are optimal solutions for both the front and back contacts of a number of structures with growing interest in the c-Si PV industry. Nowadays, substantial efforts are underway to optimize these processes in order to be applied industrially in high efficiency concepts. However a critical issue in these devices is that, most of them, demand a very low thermal input during the fabrication sequence and a minimal damage of the structure during the laser irradiation process. Keeping these two objectives in mind, in this work we discuss the possibility of using laser-based processes to contact the rear side of silicon heterojunction (SHJ) solar cells in an approach fully compatible with the low temperature processing associated to these devices. First we discuss the possibility of using standard LFC techniques in the fabrication of SHJ cells on p-type substrates, studying in detail the effect of the laser wavelength on the contact quality. Secondly, we present an alternative strategy bearing in mind that a real challenge in the rear contact formation is to reduce the damage induced by the laser irradiation. This new approach is based on local laser doping techniques previously developed by our groups, to contact the rear side of p-type c-Si solar cells by means of laser processing before rear metallization of dielectric stacks containing Al2O3. In this work we demonstrate the possibility of using this new approach in SHJ cells with a distinct advantage over other standard LFC techniques.

Formato

application/pdf

Identificador

http://oa.upm.es/21731/

Idioma(s)

eng

Publicador

E.T.S.I. Industriales (UPM)

Relação

http://oa.upm.es/21731/1/INVE_MEM_2013_146651.pdf

http://dx.doi.org/10.1117/12.2026202

Direitos

http://creativecommons.org/licenses/by-nc-nd/3.0/es/

info:eu-repo/semantics/restrictedAccess

Fonte

Laser Material Processing for Solar Energy Devices II | Laser Material Processing for Solar Energy Devices II | San Diego, California, United States | 25/08/2013

Palavras-Chave #Electrónica
Tipo

info:eu-repo/semantics/conferenceObject

Ponencia en Congreso o Jornada

PeerReviewed