971 resultados para INFORMES DE CASO
Resumo:
Presentamos los primeros resultados de un estudio exploratorio sobre el desarrollo del conocimiento didáctico de futuros profesores de matemáticas con respecto a las nociones de estructura conceptual y sistemas de representación. Estos resultados se obtuvieron al codificar y analizar las grabaciones de clase y las producciones de estudiantes del último curso de Matemáticas en una asignatura de didáctica de las matemáticas. Se encontró que las producciones y las actuaciones de los alumnos pasan por diferentes estados que permiten identificar tanto algunas dificultades, como momentos en los que surgen reorganizaciones conceptuales.
Resumo:
Este documento se usa el constructo teórico Humans-with-Media para analizar una situación construida con el software Geogebra. La situación muestra un posible entendimiento de la función derivada a partir del reconocimiento de la “función tasa de variación”.
Resumo:
Expongo una conceptualización de aprendizaje desde la teoría de la práctica social que se concreta en una propuesta sobre cómo ver el aprendizaje de la demostración en geometría euclidiana plana. Las ideas se ilustran con fragmentos de la actividad académica realizada por estudiantes de segundo semestre de Licenciatura en Matemáticas. La conferencia está dirigida a futuros profesores, profesores de matemáticas de secundaria y formadores de docentes.
Resumo:
En el presente documento reportamos parte de los resultados obtenidos de una investigación que centró su atención en el estudio de algunos tópicos de la trigonometría plana presente en los libros de texto de matemáticas de la educación media (15-18 años). En particular, nos propusimos interpretar la manera en que los libros de texto de matemáticas ponen de relieve los aspectos variacionales en estos tópicos. A través de la técnica del análisis de contenido pudimos observar que generalmente esta temática se desarrolla a través de expresiones algebraicas para calcular “datos fijos y desconocidos” de un triángulo; los resultados del estudio muestran que la necesidad de diseñar propuestas alternativas, en las cuales se haga hincapié en la visualización de relaciones “dinámicas” y funcionales entre los ángulos y los lados de un triángulo.
Resumo:
Es nuestro interés en este curso discutir algunos aspectos teóricos y metodológicos relativos a la objetivación del conocimiento matemático, específicamente el relacionado con el concepto de función y con el concepto de parábola. Haremos esta discusión desde algunos resultados obtenidos de la investigación “El conocimiento matemático: desencadenador de interrelaciones en la aula de clase”. En dicho estudio empleamos una metodología a la luz del paradigma cualitativo, bajo un enfoque crítico-dialéctico y desde una investigación colaborativa. Nos apoyamos teóricamente en autores que asumen una perspectiva sociocultural de la Educación y de la Educación Matemática, por ejemplo, Bajtin (2004, 2009), Caraça (1984), Moura (2001, 2010) y Radford (2004, 2006, 2008). Este estudio nos posibilitó comprender, entre otras ideas, que los conceptos que cada alumno objetivó con respecto al objeto función y al objeto parábola no fueron únicos; como no pueden serlo el proceso de objetivación, ni los conceptos mismos.
Resumo:
En este trabajo, presentamos los resultados de investigación de una tesis de maestría realizada en México. Nuestro objetivo fue indagar cómo los estudiantes del Nivel Medio Superior, analizan secuencias de crecimiento visual, con base en representaciones gráficas, así como la forma en que expresan algebraicamente el patrón que subyace a una secuencia; teniendo como supuesto que el análisis visual organizado de las secuencias puede contribuir a la detección, formulación y generalización de patrones. Con base en nuestros resultados, afirmamos que la visualización juega diferentes papeles dentro del proceso de generalización, los cuales identificamos y clasificamos a la luz de la Teoría de la Objetivación y la Teoría de la Representaciones Semióticas. Proponemos una herramienta para discutir el papel y funcionamiento de la visualización en la generalización de patrones.
Resumo:
En este trabajo se reportan resultados de investigaciones sobre el concepto de límite, particularmente aquellas centradas en el aspecto cognitivo, y estos, tanto en el nivel medio superior como en el nivel superior. Estas investigaciones las clasificamos en tres grupos: las que tratan el preconcepto de límite, sobre las concepciones que se tienen del concepto de límite y las que reportan dificultades al tratamiento del concepto de límite. Algunos de los resultados de estas investigaciones es que el preconcepto está asociado a “una barrera no rebasable”; en cuanto a las concepciones sobre el concepto están las que se relacionan con “valor inalcanzable”, “como aproximación”, entre otras; y algunas dificultades como al redactar la definición del límite.
Resumo:
El objetivo principal de este trabajo surge por la inquietud de estudiantes y profesores de Institutos de Educación Universitaria en Venezuela (Universidad Simón Bolívar, Universidad Nacional Abierta, Universidad Nacional Experimental de las Fuerzas Armadas, Universidad Pedagógica, entre otras); así como también los comentarios de algunos colegas de Universidades en Costa Rica y República Dominicana, donde se observa con gran preocupación el rechazo que presentan y plantean muchos profesores en el área de las matemáticas al uso e implementación de las tecnologías en sus programas y contenidos programáticos. Luego de realizar los estudios y corroborar el grado de analfabetismo tecnológico existente en los profesores de matemática, se consideraron elaborar cursos, diplomados y talleres para involucrar a nuestros docentes en el uso de las tecnologías.
Resumo:
Consideramos en este trabajo la necesidad de observar el proceso a través del cual los estudiantes enajenan las propiedades conceptuales de la representación gráfica y sus componentes figurales. Propusimos a 149 estudiantes de bachillerato, un cuestionario en el que se solicita localizar puntos con base en propiedades relacionadas en sus ordenadas y sus abscisas; habiendo constatado que los estudiantes localizan puntos sobre el plano bajo las normas analíticas, les proponemos identificar los puntos de una gráfica que tienen mayor ordenada o abscisa que los demás. En particular, deseamos saber, cuáles consideran nuestros estudiantes que son los “puntos” sobre la gráfica, las marcas colocadas al inicio y al final de la gráfica en forma de pequeños círculos, o el rasgo determinado por su posición definida.
Resumo:
Nuestra propuesta, la cual es resultado de una investigación en proceso, se encuentra inserta en el nivel Medio Superior y es relativa a la Geometría Analítica, específicamente a la construcción de las cónicas. Se nutre del plegado de papel y del uso de un software de geometría dinámica (Cabri Geomètre II) como recursos didácticos. Su referencia teórica está basada en los niveles del razonamiento geométrico de Van Hiele. Caracterizamos, así, la construcción geométrica en tres momentos: la intuición a través del plegado de papel; la visualización vía un software de geometría dinámica como herramienta didáctica argumentativa; y por último formalizando las argumentaciones y conjeturas establecidas al analizar las cónicas vía la técnica del Debate Científico.
Resumo:
En este trabajo en proceso presentamos los resultados de la primera fase de nuestra investigación (análisis preliminar), que pretende reconocer a la práctica o la estrategia de la simulación que realizan los estudiantes al momento de resolver problemas de probabilidad y con ello las cuestiones en probabilidad será de gran sencillez teniendo a la herramienta de la simulación. En ello sostenemos que la práctica de la simulación enriquece al conocimiento matemático del ser humano y en particular a la probabilidad.
Resumo:
Este trabajo centra su atención en la construcción de saberes matemáticos en un ambiente de colaboración, en el que se privilegia la interacción entre los participantes, la confrontación y la negociación. Se hace una descripción de la problemática que se vive en el aprendizaje de las matemáticas y de la necesidad de innovar a través de situaciones donde el contenido matemático es relevante para el alumno y la sociedad. De igual modo se hace una descripción sucinta acerca de que esta manera de construir saberes incluye el desarrollo de competencias matemáticas, las consideradas en el plan de estudio de educación secundaria 2006. Esta descripción contiene actividades para un taller considerando el eje sobre el manejo de la información y una versión de principios para orientar su ejecución.
Resumo:
En esta comunicación presentamos la forma como resumimos todos los posibles caminos de aprendizaje considerados para el desarrollo de dos tareas. Las dos tareas pretenden contribuir al logro de un objetivo de aprendizaje: resolver problemas que implican permutaciones sin repetición. Exponemos algunas expectativas de aprendizaje planteadas en términos de capacidades y errores y organizamos esas expectativas por medio de caminos de aprendizaje. Analizamos los caminos de aprendizaje resumiendo las estrategias de solución mediante secuencias de capacidades. Finalmente, analizamos la contribución de las tareas al logro del objetivo.
Resumo:
Bajo la visión socioepistemológica, las prácticas sociales se reconocen como fundamentación del conocimiento matemático. Estas se reinterpretan para lograr su ingreso al sistema didáctico a través de situaciones en las que dichas prácticas se transforman en el argumento. Ello permite hablar de una resignificación del conocimiento matemático (periodicidad) en un contexto argumentativo (interpretación situacional de la práctica predicción). Nuestra propuesta es que lo periódico permitirá percibir articulaciones al seno del saber matemático.
Resumo:
Este es un estudio de un caso acerca de las representaciones de números racionales en la recta numérica hechas a mano y utilizando un programa interactivo de una alumna de nivel medio superior. En un principio las representaciones de la alumna mostraron una clara comprensión de cómo representar el orden entre diferentes números en la recta numérica, pero no cómo representar correctamente las distancias entre ellos. La forma de representación utilizada (decimales o fracciones) también fue importante para que ella pudiera o no mostrar su comprensión de las distancias entre diversos números racionales. El estudio muestra el pensamiento de la alumna, sus dificultades y avances, a través de las interacciones con el entrevistador y el programa de computadora.