966 resultados para FINE PARTICULATE MATTER
Resumo:
Active regeneration experiments were carried out on a production 2007 Cummins 8.9L ISL engine and associated DOC and CPF aftertreatment system. The effects of SME biodiesel blends were investigated in this study in order to determine the PM oxidation kinetics associated with active regeneration, and to determine the effect of biodiesel on them. The experimental data from this study will also be used to calibrate the MTU-1D CPF model. Accurately predicting the PM mass retained in the CPF and the oxidation characteristics will provide the basis for computation in the ECU that will minimize the fuel penalty associated with active regeneration. An active regeneration test procedure was developed based on previous experimentation at MTU. During each experiment, the PM mass in the CPF is determined by weighing the filter at various phases. In addition, DOC and CPF pressure drop, particle size distribution, gaseous emissions, temperature, and PM concentration data are collected and recorded throughout each experiment. The experiments covered a range of CPF inlet temperatures using ULSD, B10, and B20 blends of biodiesel. The majority of the tests were performed at CPF PM loading of 2.2 g/L with in-cylinder dosing, although 4.1 g/L and a post-turbo dosing injector were also used. The PM oxidation characteristics at different test conditions were studied in order to determine the effects of biodiesel on PM oxidation during active regeneration. A PM reaction rate calculation method was developed to determine the global activation energy and the corresponding pre-exponential factor for all test fuels. The changing sum of the total flow resistance of the wall, cake, and channels was also determined as part of the data analysis process in order to check on the integrity of the data and to correct input data to be consistent with the expected trends of the resistance based on the engine conditions used in the test procedure. It was determined that increasing the percent biodiesel content in the test fuel tends to increase the PM reaction rate and the regeneration efficiency of fuel dosing, i.e., at a constant CPF inlet temperature, B20 test fuel resulted in the highest PM reaction rate and regeneration efficiency of fuel dosing. Increasing the CPF inlet temperature also increases PM reaction rate and regeneration efficiency of fuel dosing. Performing active regeneration with B20 as opposed to ULSD allows for a lower CPF temperature to be used to reach the same level of regeneration efficiency, or it allows for a shorter regeneration time at a constant CPF temperature, resulting in decreased fuel consumption for the engine during active regeneration in either scenario.
Resumo:
The particulate matter distribution (PM) trends that exist in catalyzed particulate filters (CPFs) after loading, passive oxidation, active regeneration, and post loading conditions are not clearly understood. These data are required to optimize the operation of CPFs, prevent damage to the CPFs caused by non-uniform distributions, and develop accurate CPF models. To develop an understanding of PM distribution trends, multiple tests were conducted and the PM distribution was measured in three dimensions using a terahertz wave scanner. The results of this work indicate that loading, passive oxidation, active regeneration, and post loading can all cause non-uniform PM distributions. The density of the PM in the substrate after loading and the amount of PM that is oxidized during passive oxidations and active regenerations affect the uniformity of the distribution. Post loading that occurs after active regenerations result in distributions that are less uniform than post loading that occurs after passive oxidations.
Resumo:
Background Climate change may affect mortality associated with air pollutants, especially for fine particulate matter (PM2.5) and ozone (O3). Projection studies of such kind involve complicated modelling approaches with uncertainties. Objectives We conducted a systematic review of researches and methods for projecting future PM2.5-/O3-related mortality to identify the uncertainties and optimal approaches for handling uncertainty. Methods A literature search was conducted in October 2013, using the electronic databases: PubMed, Scopus, ScienceDirect, ProQuest, and Web of Science. The search was limited to peer-reviewed journal articles published in English from January 1980 to September 2013. Discussion Fifteen studies fulfilled the inclusion criteria. Most studies reported that an increase of climate change-induced PM2.5 and O3 may result in an increase in mortality. However, little research has been conducted in developing countries with high emissions and dense populations. Additionally, health effects induced by PM2.5 may dominate compared to those caused by O3, but projection studies of PM2.5-related mortality are fewer than those of O3-related mortality. There is a considerable variation in approaches of scenario-based projection researches, which makes it difficult to compare results. Multiple scenarios, models and downscaling methods have been used to reduce uncertainties. However, few studies have discussed what the main source of uncertainties is and which uncertainty could be most effectively reduced. Conclusions Projecting air pollution-related mortality requires a systematic consideration of assumptions and uncertainties, which will significantly aid policymakers in efforts to manage potential impacts of PM2.5 and O3 on mortality in the context of climate change.
Resumo:
The photooxidation of volatile organic compounds (VOCs) in the atmosphere can lead to the formation of secondary organic aerosol (SOA), a major component of fine particulate matter. Improvements to air quality require insight into the many reactive intermediates that lead to SOA formation, of which only a small fraction have been measured at the molecular level. This thesis describes the chemistry of secondary organic aerosol (SOA) formation from several atmospherically relevant hydrocarbon precursors. Photooxidation experiments of methoxyphenol and phenolic compounds and C12 alkanes were conducted in the Caltech Environmental Chamber. These experiments include the first photooxidation studies of these precursors run under sufficiently low NOx levels, such that RO2 + HO2 chemistry dominates, an important chemical regime in the atmosphere. Using online Chemical Ionization Mass Spectrometery (CIMS), key gas-phase intermediates that lead to SOA formation in these systems were identified. With complementary particle-phase analyses, chemical mechanisms elucidating the SOA formation from these compounds are proposed.
Three methoxyphenol species (phenol, guaiacol, and syringol) were studied to model potential photooxidation schemes of biomass burning intermediates. SOA yields (ratio of mass of SOA formed to mass of primary organic reacted) exceeding 25% are observed. Aerosol growth is rapid and linear with the organic conversion, consistent with the formation of essentially non-volatile products. Gas and aerosol-phase oxidation products from the guaiacol system show that the chemical mechanism consists of highly oxidized aromatic species in the particle phase. Syringol SOA yields are lower than that of phenol and guaiacol, likely due to unique chemistry dependent on methoxy group position.
The photooxidation of several C12 alkanes of varying structure n-dodecane, 2-methylundecane, cyclododecane, and hexylcyclohexane) were run under extended OH exposure to investigate the effect of molecular structure on SOA yields and photochemical aging. Peroxyhemiacetal formation from the reactions of several multifunctional hydroperoxides and aldehyde intermediates was found to be central to organic growth in all systems, and SOA yields increased with cyclic character of the starting hydrocarbon. All of these studies provide direction for future experiments and modeling in order to lessen outstanding discrepancies between predicted and measured SOA.
Resumo:
Esta tese investiga os efeitos agudos da poluição atmosférica no pico de fluxo expiratório (PFE) de escolares com idades entre 6 e 15 anos, residentes em municípios da Amazônia Brasileira. O primeiro artigo avaliou os efeitos do material particulado fino (PM2,5) no PFE de 309 escolares do município de Alta Floresta, Mato Grosso (MT), durante a estação seca de 2006. Modelos de efeitos mistos foram estimados para toda a amostra e estratificados por turno escolar e presença de sintomas de asma. O segundo artigo expõe as estratégias utilizadas para a determinação da função de variância do erro aleatório dos modelos de efeitos mistos. O terceiro artigo analisa os dados do estudo de painel com 234 escolares, realizado na estação seca de 2008 em Tangará da Serra, MT. Avaliou-se os efeitos lineares e com defasagem distribuída (PDLM) do material particulado inalável (PM10), do PM2,5 e do Black Carbon (BC) no PFE de todos os escolares e estratificados por grupos de idade. Nos três artigos, os modelos de efeitos mistos foram ajustados por tendência temporal, temperatura, umidade e características individuais. Os modelos também consideraram o ajuste da autocorrelação residual e da função de variância do erro aleatório. Quanto às exposições, foram avaliados os efeitos das exposições de 5hs, 6hs, 12hs e 24hs, no dia corrente, com defasagens de 1 a 5 dias e das médias móveis de 2 e 3 dias. No que se refere aos resultados de Alta Floresta, os modelos para todas as crianças indicaram reduções no PFE variando de 0,26 l/min (IC95%: 0,49; 0,04) a 0,38 l/min (IC95%: 0,71; 0,04), para cada aumento de 10g/m3 no PM2,5. Não foram observados efeitos significativos da poluição no grupo das crianças asmáticas. A exposição de 24hs apresentou efeito significativo no grupo de alunos da tarde e no grupo dos não asmáticos. A exposição de 0hs a 5:30hs foi significativa tanto para os alunos da manhã quanto para a tarde. Em Tangará da Serra, os resultados mostraram reduções significativas do PFE para aumentos de 10 unidades do poluente, principalmente para as defasagens de 3, 4 e 5 dias. Para o PM10, as reduções variaram de 0,15 (IC95%: 0,29; 0,01) a 0,25 l/min (IC95%: 0,40 ; 0,10). Para o PM2,5, as reduções estiveram entre 0,46 l/min (IC95%: 0,86 to 0,06 ) e 0,54 l/min (IC95%: 0,95; 0,14). E no BC, a redução foi de aproximadamente 0,014 l/min. Em relação ao PDLM, efeitos mais importantes foram observados nos modelos baseados na exposição do dia corrente até 5 dias passados. O efeito global foi significativo apenas para o PM10, com redução do PFE de 0,31 l/min (IC95%: 0,56; 0,05). Esta abordagem também indicou efeitos defasados significativos para todos os poluentes. Por fim, o estudo apontou as crianças de 6 a 8 anos como grupo mais sensível aos efeitos da poluição. Os achados da tese sugerem que a poluição atmosférica decorrente da queima de biomassa está associada a redução do PFE de crianças e adolescentes com idades entre 6 e 15 anos, residentes na Amazônia Brasileira.
Resumo:
The objective of this paper is to demonstrate an approach to characterize the spatial variability in ambient air concentrations using mobile platform measurements. This approach may be useful for air toxics assessments in Environmental Justice applications, epidemiological studies, and environmental health risk assessments. In this study, we developed and applied a method to characterize air toxics concentrations in urban areas using results of the recently conducted field study in Wilmington, DE. Mobile measurements were collected over a 4- x 4-km area of downtown Wilmington for three components: formaldehyde (representative of volatile organic compounds and also photochemically reactive pollutants), aerosol size distribution (representing fine particulate matter), and water-soluble hexavalent chromium (representative of toxic metals). These measurements were,used to construct spatial and temporal distributions of air toxics in the area that show a very strong temporal variability, both diurnally and seasonally. An analysis of spatial variability indicates that all pollutants varied significantly by location, which suggests potential impact of local sources. From the comparison with measurements at the central monitoring site, we conclude that formaldehyde and fine particulates show a positive correlation with temperature, which could also be the reason that photochemically generated formaldehyde and fine particulates over the study area correlate well with the fine particulate matter measured at the central site.
Resumo:
BACKGROUND: Highway maintenance workers are constantly and simultaneously exposed to traffic-related particle and noise emissions, and both have been linked to increased cardiovascular morbidity and mortality in population-based epidemiology studies. OBJECTIVES: We aimed to investigate short-term health effects related to particle and noise exposure. METHODS: We monitored 18 maintenance workers, during as many as five 24-hour periods from a total of 50 observation days. We measured their exposure to fine particulate matter (PM2.5), ultrafine particles, noise, and the cardiopulmonary health endpoints: blood pressure, pro-inflammatory and pro-thrombotic markers in the blood, lung function and fractional exhaled nitric oxide (FeNO) measured approximately 15 hours post-work. Heart rate variability was assessed during a sleep period approximately 10 hours post-work. RESULTS: PM2.5 exposure was significantly associated with C-reactive protein and serum amyloid A, and negatively associated with tumor necrosis factor α. None of the particle metrics were significantly associated with von Willebrand factor or tissue factor expression. PM2.5 and work noise were associated with markers of increased heart rate variability, and with increased HF and LF power. Systolic and diastolic blood pressure on the following morning were significantly associated with noise exposure after work, and non-significantly associated with PM2.5. We observed no significant associations between any of the exposures and lung function or FeNO. CONCLUSIONS: Our findings suggest that exposure to particles and noise during highway maintenance work might pose a cardiovascular health risk. Actions to reduce these exposures could lead to better health for this population of workers.
Resumo:
El propósito de este estudio es determinar la relación entre la exposición ocupacional y los niveles de audición en trabajadores urbanos en espacio abierto (aseo urbano en general). Se realizó un estudio de corte transversal con 491 personas que incluyen hombres y mujeres, cuyo ambiente laboral es el espacio abierto de la ciudad. Los datos se obtuvieron durante los exámenes médicos periódicos realizados en el año 2014 a los empleados de una empresa cuya actividad económica es el aseo urbano, que incluye recolección de basuras, cuidado forestal y de prados de uso común, y limpieza del borde de los andenes. Se realizó estadística descriptiva para las características demográficas y razón de disparidad u Odds Ratio (OR) para buscar la relación de antecedentes y hábitos personales con el riesgo de desarrollar pérdida auditiva. De las 491 personas expuestas a niveles altos de ruido ocupacional, 62% presentó pérdida auditiva, de los cuales la mayoría se desempeña como guadañadores y cortadores de césped, y son personas que llevan trabajando entre 1-5 años en la empresa. Se encontró un aumento estadísticamente significativo entre la baja escolaridad y el riesgo de sufrir hipoacusia (p=0.0001) y un efecto protector del uso de motocicleta y audífonos. La enfermedad vascular periférica, la práctica de tejo y la diabetes mostraron una fuerte tendencia a aumentar el riesgo. La pérdida auditiva encontrada en este grupo no se puede relacionar directamente con la exposición ocupacional a ruido, a pesar de ser trabajos que se llevan a cabo en el espacio urbano. Sin embargo, la baja escolaridad favorece la lesión auditiva y puede verse acelerada por enfermedades de alta prevalencia como diabetes y practicas recreacionales locales.
Resumo:
European air quality legislation has reduced emissions of air pollutants across Europe since the 1970s, affecting air quality, human health and regional climate. We used a coupled composition-climate model to simulate the impacts of European air quality legislation and technology measures implemented between 1970 and 2010. We contrast simulations using two emission scenarios; one with actual emissions in 2010 and the other with emissions that would have occurred in 2010 in the absence of technological improvements and end-of-pipe treatment measures in the energy, industrial and road transport sectors. European emissions of sulphur dioxide, black carbon (BC) and organic carbon in 2010 are 53%, 59% and 32% lower respectively compared to emissions that would have occurred in 2010 in the absence of legislative and technology measures. These emission reductions decreased simulated European annual mean concentrations of fine particulate matter(PM2.5) by 35%, sulphate by 44%, BC by 56% and particulate organic matter by 23%. The reduction in PM2.5 concentrations is calculated to have prevented 80 000 (37 000–116 000, at 95% confidence intervals) premature deaths annually across the European Union, resulting in a perceived financial benefit to society of US$232 billion annually (1.4% of 2010 EU GDP). The reduction in aerosol concentrations due to legislative and technology measures caused a positive change in the aerosol radiative effect at the top of atmosphere, reduced atmospheric absorption and also increased the amount of solar radiation incident at the surface over Europe. We used an energy budget approximation to estimate that these changes in the radiative balance have increased European annual mean surface temperatures and precipitation by 0.45 ± 0.11 °C and by 13 ± 0.8 mm yr−1 respectively. Our results show that the implementation of European legislation and technological improvements to reduce the emission of air pollutants has improved air quality and human health over Europe, as well as having an unintended impact on the regional radiative balance and climate.
Resumo:
The São Paulo State has 36 million people, 25 million living in three metropolitan areas. Only the São Paulo Metropolitan Region (SPMR) includes the state capital (São Paulo City) plus 38 cities, where ≈ 18 million people live, affected by frequent episodes of ozone, NOx, and fine particulate matter. In 2003, it was estimated that 15.1% of the SPMR vehicles used ethanol and 70.2% used the local gasoline. Natural gas vehicles have witnessed a booming participation in the last years, mainly through conversion of gasoline cars, and the present fleet is almost one million vehicles. To face the problems generated by light vehicles emissions the Federal Government set a program called PROCONVE - Program of Air Pollution Control from Vehicles - in 1986 and since then until now a significant reduction was reached, but the growth of the fleet hides most of the emission cuts. A discussion covers the evolution of the air pollution management in São Paulo; and innovative tools for air pollution management - both for mobile and stationary sources. This is an abstract of a paper presented at the 98th AWMA Annual Conference and Exhibition (Minneapolis, MN 6/21-24/2005).
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Pós-graduação em Química - IQ
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
OBJECTIVE: Due to their toxicity, diesel emissions have been submitted to progressively more restrictive regulations in developed countries. However, in Brazil, the implementation of the Cleaner Diesel Technologies policy (Euro IV standards for vehicles produced in 2009 and low-sulfur diesel with 50 ppm of sulfur) was postponed until 2012 without a comprehensive analysis of the effect of this delay on public health parameters. We aimed to evaluate the impact of the delay in implementing the Cleaner Diesel Technologies policy on health indicators and monetary health costs in Brazil. METHODS: The primary estimator of exposure to air pollution was the concentration of ambient fine particulate matter (particles with aerodynamic diameters, <2.5 mu m, [PM2.5]). This parameter was measured daily in six Brazilian metropolitan areas during 2007-2008. We calculated 1) the projected reduction in the PM2.5 that would have been achieved if the Euro IV standards had been implemented in 2009 and 2) the expected reduction after implementation in 2012. The difference between these two time curves was transformed into health outcomes using previous dose-response curves. The economic valuation was performed based on the DALY (disability-adjusted life years) method. RESULTS: The delay in implementing the Cleaner Diesel Technologies policy will result in an estimated excess of 13,984 deaths up to 2040. Health expenditures are projected to be increased by nearly US$ 11.5 billion for the same period. CONCLUSIONS: The present results indicate that a significant health burden will occur because of the postponement in implementing the Cleaner Diesel Technologies policy. These results also reinforce the concept that health effects must be considered when revising fuel and emission policies.
Resumo:
Background: The Amazon represents an area of 61% of Brazilian territory and is undergoing major changes resulting from disorderly economic development, especially the advance of agribusiness. Composition of the atmosphere is controlled by several natural and anthropogenic processes, and emission from biomass burning is one with the major impact on human health. The aim of this study was to evaluate genotoxic potential of air pollutants generated by biomass burning through micronucleus assay in exfoliated buccal cells of schoolchildren in the Brazilian Amazon region. Methods: The study was conducted during the dry seasons in two regions of the Brazilian Amazon. The assay was carried out on buccal epithelial cells of 574 schoolchildren between 6-16 years old. Results: The results show a significant difference between micronucleus frequencies in children exposed to biomass burning compared to those in a control area. Conclusions: The present study demonstrated that in situ biomonitoring using a sensitive and low cost assay (buccal micronucleus assay) may be an important tool for monitoring air quality in remote regions. It is difficult to attribute the increase in micronuclei frequency observed in our study to any specific toxic element integrated in the particulate matters. However, the contribution of the present study lies in the evidence that increased exposure to fine particulate matter generates an increased micronuclei frequency in oral epithelial cells of schoolchildren.