985 resultados para Composite Measurement Scales


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Materials engineering focuses on the assembly of materials´ properties to design new products with the best performance. By using sub-micrometer size materials in the production of composites, it is possible to obtain objects with properties that none of their compounds show individually. Once three-dimensional materials can be easily customized to obtain desired properties, much interest has been paid to nanostructured poly-mers in order to build biocompatible devices. Over the past years, the thermosensitive microgels have become more common in the framework of bio-materials with potential applicability in therapy and/or diagnostics. In addition, high aspect ratio biopolymers fibers have been produced using the cost-effective method called electrospinning. Taking advantage of both microgels and electrospun fibers, surfaces with enhanced functionalities can be obtained and, therefore employed in a wide range of applications. This dissertation reports on the confinement of stimuli-responsive microgels through the colloidal electro-spinning process. The process mainly depends on the composition, properties and patterning of the precur-sor materials within the polymer jet. Microgels as well as the electrospun non-woven mats were investigated to correlate the starting materials with the final morphology of the composite fibers. PNIPAAm and PNIPAAm/Chitosan thermosensitive microgels with different compositions were obtained via surfactant free emulsion polymerization (SFEP) and characterized in terms of chemical structure, morphology, thermal sta-bility, swelling properties and thermosensitivity. Finally, the colloidal electrospinning method was carried out from spinning solutions composed of the stable microgel dispersions (up to a concentration of about 35 wt. % microgels) and a polymer solution of PEO/water/ethanol mixture acting as fiber template solution. The confinement of microgels was confirmed by Scanning Electron Microscopy (SEM). The electrospinning process was statistically analysed providing the optimum set of parameters aimed to minimize the fiber diameter, which give rise to electrospun nanofibers of PNIPAAm microgels/PEO with a mean fiber diameter of 63 ± 25 nm.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Evaluation of Cyclosporin A (CyA) blood concentration is imperative in solid organ transplantation in order to achieve maximal immunosuppression with the least side effects. We compared the results of whole blood concentrations of CyA in 50 blood samples simultaneously evaluated by the fluorescent polarization immune assay (TDx) and the enzymatic competitive immune assay (EMIT 2000). There was a strong correlation between both kits for any range of CyA blood concentration (R=0.99, p<0.001). The within-run and between-days coefficient of variation were less than 4% for both assays. The cost for each CyA measurement was 50% lower for the EMIT assay when compared to the TDx assay. We concluded that the EMIT is as accurate as the TDx in measuring CyA blood concentration and has the advantage of a lower cost, as well as the possibility of widespread access to the EMIT methodology in contrast to the TDx equipment, allowing the laboratory to perform several routines within a working day.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

RESUMO - A definição e medição da produção são questões centrais para a administração hospitalar. A produção hospitalar, quando se consideram os casos tratados, baseia-se em dois aspectos: a definição de sistemas de classificação de doentes como metodologia para identificar produtos e a criação de índices de casemix para se compararem esses mesmos produtos. Para a sua definição e implementação podem ser consideradas características relacionadas com a complexidade dos casos (atributo da oferta) ou com a sua gravidade (atributo da procura), ou ainda características mistas. Por sua vez, a análise do perfil e da política de admissões dos hospitais adquire um maior relevo no contexto de novas experiências previstas e em curso no SNS e da renovada necessidade de avaliação e regulação que daí decorrem. Neste estudo pretendeu-se discutir a metodologia para apuramento do índice de casemix dos hospitais, introduzindo- se a gravidade dos casos tratados como atributo relevante para a sua concretização. Assim, foi analisada uma amostra de 950 443 casos presentes na base de dados dos resumos de alta em 2002, tendo- -se dado particular atenção aos 31 hospitais posteriormente constituídos como SA. Foram considerados três índices de casemix: índice de complexidade (a partir do peso relativo dos DRGs), índice de gravidade (a partir da escala de mortalidade esperada do disease staging recalibrada para Portugal) e índice conjunto (média dos dois anteriores). Verificou-se que a análise do índice de complexidade, de gravidade e conjunto dá informações distintas sobre o perfil de admissões dos hospitais considerados. Os índices de complexidade e de gravidade mostram associações distintas às características dos hospitais e dos doentes tratados. Para além disso, existe uma diferença clara entre os casos com tratamento médico e cirúrgico. No entanto, para a globalidade dos hospitais analisados observou-se que os hospitais que tratam os casos mais graves tratam igualmente os mais complexos, tendo-se ainda identificado alguns hospitais em que tal não se verifica e, quando possível, apontado eventuais razões para esse comportamento.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Composite materials have a complex behavior, which is difficult to predict under different types of loads. In the course of this dissertation a methodology was developed to predict failure and damage propagation of composite material specimens. This methodology uses finite element numerical models created with Ansys and Matlab softwares. The methodology is able to perform an incremental-iterative analysis, which increases, gradually, the load applied to the specimen. Several structural failure phenomena are considered, such as fiber and/or matrix failure, delamination or shear plasticity. Failure criteria based on element stresses were implemented and a procedure to reduce the stiffness of the failed elements was prepared. The material used in this dissertation consist of a spread tow carbon fabric with a 0°/90° arrangement and the main numerical model analyzed is a 26-plies specimen under compression loads. Numerical results were compared with the results of specimens tested experimentally, whose mechanical properties are unknown, knowing only the geometry of the specimen. The material properties of the numerical model were adjusted in the course of this dissertation, in order to find the lowest difference between the numerical and experimental results with an error lower than 5% (it was performed the numerical model identification based on the experimental results).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The effects of PMSs on the people’s behaviour represent a high degree of relevance in the context of an organization performance and success. Thus, motivational and behavioural consequences of performance measurements are far from being totally understood (Franco-Santos et al., 2012). This work project (WP) purposes going further regarding the consequences/effects on people’s behaviour of using PMSs in organizations. The researcher conducted 11 interviews to managers during a nine-month internship as a controller in a Portuguese multi-national company. The evidence from this WP suggests that the way how managers understand a PMS determines a lot the way how they behave. Data also supports that PMSs influences in several ways motivation, perceptions, participation and job-related stress of managers.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The assessment of existing timber structures is often limited to information obtained from non or semi destructive testing, as mechanical testing is in many cases not possible due to its destructive nature. Therefore, the available data provides only an indirect measurement of the reference mechanical properties of timber elements, often obtained through empirical based correlations. Moreover, the data must result from the combination of different tests, as to provide a reliable source of information for a structural analysis. Even if general guidelines are available for each typology of testing, there is still a need for a global methodology allowing to combine information from different sources and infer upon that information in a decision process. In this scope, the present work presents the implementation of a probabilistic based framework for safety assessment of existing timber elements. This methodology combines information gathered in different scales and follows a probabilistic framework allowing for the structural assessment of existing timber elements with possibility of inference and updating of its mechanical properties, through Bayesian methods. The probabilistic based framework is based in four main steps: (i) scale of information; (ii) measurement data; (iii) probability assignment; and (iv) structural analysis. In this work, the proposed methodology is implemented in a case study. Data was obtained through a multi-scale experimental campaign made to old chestnut timber beams accounting correlations of non and semi-destructive tests with mechanical properties. Finally, different inference scenarios are discussed aiming at the characterization of the safety level of the elements.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The innovative Horizon 2020 program sponsored by the European Union (EU) aims to promote and develop processes of waste integration in construction materials. However, several potential health hazards caused by building materials have been identified and, there-fore, there is an ongoing need to develop new recycling methods for hazardous wastes and effi-cient barriers in order to prevent toxic releases from the new construction solutions with wastes. This paper presents an overview that focus on two main aspects: the identification of the health risks related to radioactivity and heavy metals present in building materials and identification of these toxic substances in new construction solutions that contain recycled wastes. Different waste materials were selected and distinct methodologies of toxicity evaluation are presented to analyse the potential hazardous, the feasibility of using those wastes and the achievement of op-timal construction solutions involving wastes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The effectiveness of prefabricated hybrid composite plates (HCPs) as a seismic retrofitting solution for damaged interior RC beam-column joints is experimentally studied. HCP is composed of a thin plate made of strain hardening cementitious composite (SHCC) reinforced with CFRP sheets/laminates. Two full-scale severely damaged interior beam-column joints are retrofitted using two different configurations of HCPs. The effectiveness of these retrofitting solutions mainly in terms of hysteretic response, dissipated energy, degradation of secant stiffness, displacement ductility and failure modes are compared to their virgin states. According to these criteria, both solutions resulted in superior responses regarding the ones registered in their virgin states.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Hybrid Composite Plate (HCP) is a reliable recently proposed retrofitting solution for concrete structures, which is composed of a strain hardening cementitious composite (SHCC) plate reinforced with Carbon Fibre Reinforced Polymer (CFRP). This system benefits from the synergetic advantages of these two composites, namely the high ductility of SHCC and the high tensile strength of CFRPs. In the materialstructural of HCP, the ultra-ductile SHCC plate acts as a suitable medium for stress transfer between CFRP laminates (bonded into the pre-sawn grooves executed on the SHCC plate) and the concrete substrate by means of a connection system made by either chemical anchors, adhesive, or a combination thereof. In comparison with traditional applications of FRP systems, HCP is a retrofitting solution that (i) is less susceptible to the detrimental effect of the lack of strength and soundness of the concrete cover in the strengthening effectiveness; (ii) assures higher durability for the strengthened elements and higher protection to the FRP component in terms of high temperatures and vandalism; and (iii) delays, or even, prevents detachment of concrete substrate. This paper describes the experimental program carried out, and presents and discusses the relevant results obtained on the assessment of the performance of HCP strengthened reinforced concrete (RC) beams subjected to flexural loading. Moreover, an analytical approach to estimate the ultimate flexural capacity of these beams is presented, which was complemented with a numerical strategy for predicting their load-deflection behaviour. By attaching HCP to the beams’ soffit, a significant increase in the flexural capacity at service, at yield initiation of the tension steel bars and at failure of the beams can be achieved, while satisfactory deflection ductility is assured and a high tensile capacity of the CFRP laminates is mobilized. Both analytical and numerical approaches have predicted with satisfactory agreement, the load-deflection response of the reference beam and the strengthened ones tested experimentally.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper aims to evaluate experimentally the potentialities of Hybrid Composite Plates (HCPs) technique for the shear strengthening of reinforced concrete (RC) beams that were previously subjected to intense damage in shear. HCP is a thin plate of Strain Hardening Cementitious Composite (SHCC) reinforced with Carbon Fiber Reinforced Polymer (CFRP) laminates. For this purpose, an experimental program composed of two series of beams (rectangular and T cross section) was executed to assess the strengthening efficiency of this technique. In the first step of this experimental program, the control beams, without steel stirrups, were loaded up to their shear failure, and fully unloaded. Then, these pre-damaged beams were shear strengthened by applying HCPs to their lateral faces by using a combination of epoxy adhesive and mechanical anchors. The bolts were applied with a certain torque in order to increase the concrete confinement. The obtained results showed that the increase of load carrying capacity of the damaged strengthened beams when HCPs were applied with epoxy adhesive and mechanical anchors was 2 and 2.5 times of the load carrying capacity of the corresponding reference beams (without HCPs) for the rectangular and T cross section beam series, respectively. To further explore the potentialities of the HCPs technique for the shear strengthening, the experimental tests were simulated using an advanced numerical model by a FEM-based computer program. After demonstration the good predictive performance of the numerical model, a parametric study was executed to highlight the influence of SHCC as an alternative for mortar, as well as the influence of torque level applied to the mechanical anchors, on the load carrying capacity of beams strengthened with the proposed technique.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Given the need for using more sustainable constructive solutions, an innovative composite material based on a combination of distinct industrial by-products is proposed aiming to reduce waste and energy consumption in the production of construction materials. The raw materials are thermal activated flue-gas desulphurization (FGD) gypsum, which acts as a binder, granulated cork as the aggregate and recycled textile fibres from used tyres intended to reinforce the material. This paper presents the results of the design of the composite mortar mixes, the characterization of the key physical properties (density, porosity and ultrasonic pulse velocity) and the mechanical validation based on uniaxial compressive tests and fracture energy tests. In the experimental campaign, the influence of the percentage of the raw materials in terms of gypsum mass, on the mechanical properties of the composite material was assessed. It was observed that the percentage of granulated cork decreases the compressive strength of the composite material but contributes to the increase in the compressive fracture energy. Besides, the recycled textile fibres play an important role in the mode I fracture process and in the fracture energy of the composite material, resulting in a considerable increase in the mode I fracture energy.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We present a study on human mobility at small spatial scales. Differently from large scale mobility, recently studied through dollar-bill tracking and mobile phone data sets within one big country or continent, we report Brownian features of human mobility at smaller scales. In particular, the scaling exponents found at the smallest scales is typically close to one-half, differently from the larger values for the exponent characterizing mobility at larger scales. We carefully analyze 12-month data of the Eduroam database within the Portuguese university of Minho. A full procedure is introduced with the aim of properly characterizing the human mobility within the network of access points composing the wireless system of the university. In particular, measures of flux are introduced for estimating a distance between access points. This distance is typically non-Euclidean, since the spatial constraints at such small scales distort the continuum space on which human mobility occurs. Since two different ex- ponents are found depending on the scale human motion takes place, we raise the question at which scale the transition from Brownian to non-Brownian motion takes place. In this context, we discuss how the numerical approach can be extended to larger scales, using the full Eduroam in Europe and in Asia, for uncovering the transi- tion between both dynamical regimes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Dissertação de mestrado integrado em Engenharia e Gestão Industrial

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Thermoplastic matrix composites are receiving increasing interest in last years. This is due to several advantageous properties and speed of processing of these materials as compared to their thermoset counterparts. Among thermoplastic composites, Long Fibre Thermoplastics (LFTs) have seen the fastest growth, mainly due to developments in the automotive sector. LFTs combine the (semi-)structural material properties of long (>1 cm) fibres, with the ease and speed of thermoplastic processing. This paper reports a study of a novel low-cost LFT technology and resulting composites. A patented powder-coating machine able to produce continuously pre-impregnated materials directly from fibre rovings and polymer powders was used to process glass-fibre reinforced polypropylene (GF/PP) towpregs. Such pre-impregnated materials were then chopped and used to make LFTs in a patented low-cost piston-blender developed by the Centre of Lightweight Structures, TUD-TNO, the Netherlands. The work allowed studying the most relevant towpreg production parameters and establishing the processing window needed to obtain a good quality GF/PP powder coated material. Finally, the processing window that allows producing LFTs of good quality in the piston-blender and the mechanical properties of final stamped GF/PP composite parts were also determined.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this work, a steel heated pultrusion die was designed, developed and manufactured to produce U200 glass fibre reinforced thermosetting matrix (GRP) profiles. The finite element analysis (FEA) was used to predict and optimise the developed die heating by using cylindrical electrical powered cartridges. To assess the new die performance it was mounted in the 120 kN pultrusion line of the Portuguese company Vidropol SA and used to produce continuously U200 profiles able to meet all requirements specified for the E23 grade accordingly to the European Standard EN 13706: 2002. After setting up the type, orientation and sequence of layers in laminate, orthophthalic, isophthalic and bisphenolic unsaturated polyester as well as vinylester resins were used to produce glass fibre reinforced U 200 composite profiles. An appropriated catalyst system was selected and the processing variables optimised for each case, namely, pultrusion pull-speed and die temperature. Finally, the produced U200 profiles were submitted to visual inspection, calcination and mechanical tests, namely, flexural, tensional and interlaminar shear strength (ILSS) tests, to assess their accomplishment with the EN 13706 requirements.