583 resultados para Collaborative Design Learning
Resumo:
This study examines how awareness of the interior architecture of a building, specifically daylighing, affects students academic performance. Extensive research has proven that the use of daylighting in a classroom can significantly enhance students’ academic success. The problem statement and purpose of this study is to determine if student awareness of daylighting in their learning environment affects academic performance compared to students with no knowledge of daylighting. Research and surveys in existing and newly constructed high schools were conducted to verify the results of this study. These design ideas and concepts could influence the architecture and design industry to advocate construction and building requirements that incorporate more sustainable design teaching techniques.
Resumo:
This mixed methods concurrent triangulation design study was predicated upon two models that advocated a connection between teaching presence and perceived learning: the Community of Inquiry Model of Online Learning developed by Garrison, Anderson, and Archer (2000); and the Online Interaction Learning Model by Benbunan-Fich, Hiltz, and Harasim (2005). The objective was to learn how teaching presence impacted students’ perceptions of learning and sense of community in intensive online distance education courses developed and taught by instructors at a regional comprehensive university. In the quantitative phase online surveys collected relevant data from participating students (N = 397) and selected instructional faculty (N = 32) during the second week of a three-week Winter Term. Student information included: demographics such as age, gender, employment status, and distance from campus; perceptions of teaching presence; sense of community; perceived learning; course length; and course type. The students claimed having positive relationships between teaching presence, perceived learning, and sense of community. The instructors showed similar positive relationships with no significant differences when the student and instructor data were compared. The qualitative phase consisted of interviews with 12 instructors who had completed the online survey and replied to all of the open-response questions. The two phases were integrated using a matrix generation, and the analysis allowed for conclusions regarding teaching presence, perceived learning, and sense of community. The findings were equivocal with regard to satisfaction with course length and the relative importance of the teaching presence components. A model was provided depicting relationships between and among teaching presence components, perceived learning, and sense of community in intensive online courses.
Resumo:
In this article, we introduce two new variants of the Assembly Line Worker Assignment and Balancing Problem (ALWABP) that allow parallelization of and collaboration between heterogeneous workers. These new approaches suppose an additional level of complexity in the Line Design and Assignment process, but also higher flexibility; which may be particularly useful in practical situations where the aim is to progressively integrate slow or limited workers in conventional assembly lines. We present linear models and heuristic procedures for these two new problems. Computational results show the efficiency of the proposed approaches and the efficacy of the studied layouts in different situations. (C) 2012 Elsevier B.V. All rights reserved.
Resumo:
Discusses the technological changes that affects learning organizations as well as the human, technical, legal and sustainable aspects regarding learning objects repositories creation, maintenance and use. It presents concepts of information objects and learning objects, the functional requirements needed to their storage at Learning Management Systems. The role of Metadata is reviewed concerning learning objects creation and retrieval, followed by considerations about learning object repositories models, community participation/collaborative strategies and potential derived metrics/indicators. As a result of this desktop research, it can be said that not only technical competencies are critical to any learning objects repository implementation, but it urges that an engaged community of interest be establish as a key to support a learning object repository project. On that matter, researchers are applying Activity Theory (Vygostky, Luria y Leontiev) in order to seek joint perceptions and actions involving learning objects repository users, curators and managers, perceived as critical assets to a successful proposal.
Resumo:
Background: Chronic diseases are the leading cause of premature death and disability in the world with overnutrition a primary cause of diet-related ill health. Excess energy intake, saturated fat, sugar, and salt derived from processed foods are a major cause of disease burden. Our objective is to compare the nutritional composition of processed foods between countries, between food companies, and over time. Design: Surveys of processed foods will be done in each participating country using a standardized methodology. Information on the nutrient composition for each product will be sought either through direct chemical analysis, from the product label, or from the manufacturer. Foods will be categorized into 14 groups and 45 categories for the primary analyses which will compare mean levels of nutrients at baseline and over time. Initial commitments to collaboration have been obtained from 21 countries. Conclusions: This collaborative approach to the collation and sharing of data will enable objective and transparent tracking of processed food composition around the world. The information collected will support government and food industry efforts to improve the nutrient composition of processed foods around the world.
Resumo:
This paper aims to provide an improved NSGA-II (Non-Dominated Sorting Genetic Algorithm-version II) which incorporates a parameter-free self-tuning approach by reinforcement learning technique, called Non-Dominated Sorting Genetic Algorithm Based on Reinforcement Learning (NSGA-RL). The proposed method is particularly compared with the classical NSGA-II when applied to a satellite coverage problem. Furthermore, not only the optimization results are compared with results obtained by other multiobjective optimization methods, but also guarantee the advantage of no time-spending and complex parameter tuning.
Resumo:
Objectives To evaluate the learning, retention and transfer of performance improvements after Nintendo Wii Fit (TM) training in patients with Parkinson's disease and healthy elderly people. Design Longitudinal, controlled clinical study. Participants Sixteen patients with early-stage Parkinson's disease and 11 healthy elderly people. Interventions Warm-up exercises and Wii Fit training that involved training motor (shifts centre of gravity and step alternation) and cognitive skills. A follow-up evaluative Wii Fit session was held 60 days after the end of training. Participants performed a functional reach test before and after training as a measure of learning transfer. Main outcome measures Learning and retention were determined based on the scores of 10 Wii Fit games over eight sessions. Transfer of learning was assessed after training using the functional reach test. Results Patients with Parkinson's disease showed no deficit in learning or retention on seven of the 10 games, despite showing poorer performance on five games compared with the healthy elderly group. Patients with Parkinson's disease showed marked learning deficits on three other games, independent of poorer initial performance. This deficit appears to be associated with cognitive demands of the games which require decision-making, response inhibition, divided attention and working memory. Finally, patients with Parkinson's disease were able to transfer motor ability trained on the games to a similar untrained task. Conclusions The ability of patients with Parkinson's disease to learn, retain and transfer performance improvements after training on the Nintendo Wii Fit depends largely on the demands, particularly cognitive demands, of the games involved, reiterating the importance of game selection for rehabilitation purposes. (C) 2012 Chartered Society of Physiotherapy. Published by Elsevier Ltd. All rights reserved.
Resumo:
The continuous increase of genome sequencing projects produced a huge amount of data in the last 10 years: currently more than 600 prokaryotic and 80 eukaryotic genomes are fully sequenced and publically available. However the sole sequencing process of a genome is able to determine just raw nucleotide sequences. This is only the first step of the genome annotation process that will deal with the issue of assigning biological information to each sequence. The annotation process is done at each different level of the biological information processing mechanism, from DNA to protein, and cannot be accomplished only by in vitro analysis procedures resulting extremely expensive and time consuming when applied at a this large scale level. Thus, in silico methods need to be used to accomplish the task. The aim of this work was the implementation of predictive computational methods to allow a fast, reliable, and automated annotation of genomes and proteins starting from aminoacidic sequences. The first part of the work was focused on the implementation of a new machine learning based method for the prediction of the subcellular localization of soluble eukaryotic proteins. The method is called BaCelLo, and was developed in 2006. The main peculiarity of the method is to be independent from biases present in the training dataset, which causes the over‐prediction of the most represented examples in all the other available predictors developed so far. This important result was achieved by a modification, made by myself, to the standard Support Vector Machine (SVM) algorithm with the creation of the so called Balanced SVM. BaCelLo is able to predict the most important subcellular localizations in eukaryotic cells and three, kingdom‐specific, predictors were implemented. In two extensive comparisons, carried out in 2006 and 2008, BaCelLo reported to outperform all the currently available state‐of‐the‐art methods for this prediction task. BaCelLo was subsequently used to completely annotate 5 eukaryotic genomes, by integrating it in a pipeline of predictors developed at the Bologna Biocomputing group by Dr. Pier Luigi Martelli and Dr. Piero Fariselli. An online database, called eSLDB, was developed by integrating, for each aminoacidic sequence extracted from the genome, the predicted subcellular localization merged with experimental and similarity‐based annotations. In the second part of the work a new, machine learning based, method was implemented for the prediction of GPI‐anchored proteins. Basically the method is able to efficiently predict from the raw aminoacidic sequence both the presence of the GPI‐anchor (by means of an SVM), and the position in the sequence of the post‐translational modification event, the so called ω‐site (by means of an Hidden Markov Model (HMM)). The method is called GPIPE and reported to greatly enhance the prediction performances of GPI‐anchored proteins over all the previously developed methods. GPIPE was able to predict up to 88% of the experimentally annotated GPI‐anchored proteins by maintaining a rate of false positive prediction as low as 0.1%. GPIPE was used to completely annotate 81 eukaryotic genomes, and more than 15000 putative GPI‐anchored proteins were predicted, 561 of which are found in H. sapiens. In average 1% of a proteome is predicted as GPI‐anchored. A statistical analysis was performed onto the composition of the regions surrounding the ω‐site that allowed the definition of specific aminoacidic abundances in the different considered regions. Furthermore the hypothesis that compositional biases are present among the four major eukaryotic kingdoms, proposed in literature, was tested and rejected. All the developed predictors and databases are freely available at: BaCelLo http://gpcr.biocomp.unibo.it/bacello eSLDB http://gpcr.biocomp.unibo.it/esldb GPIPE http://gpcr.biocomp.unibo.it/gpipe
Resumo:
[EN]This paper aims to provide guidance on how to take advantage existing resources in Internet, for which a study about what is "Collaborative Learning" and conditions for the design of collaborative strategies, is done. The concept of "Ubiquitous Learning" is analyzed as an extension or a natural evolution of E-Learning and M-Learning. At the end, the activities carried out within a presential class supported by technologies in order to generate strategies for meaningful learning will be described. [ES]Este documento tiene por objeto proporcionar orientación sobre cómo aprovechar los recursos que existen en Internet, como parte de un estudio sobre lo que es "aprendizaje colaborativo" y cuáles son las condiciones para el diseño de estrategias de colaboración. El concepto de "aprendizaje ubicuo" se analiza como una extensión o una evolución natural de E-Learning y m- Learning. Al final del documento, se describen las actividades llevadas a cabo, como apoyo a una clase presencial usando herramientas virtuales, con el fin de generar estrategias para el aprendizaje significativo.
Resumo:
[EN]The use of IT for teaching and learning is widely accepted as a means to enhance the learning experience. Hence, education professionals at all levels experience the impulse to introduce some kind of IT design in classrooms of every kind, where the use of IT has, at points, become mandatory. Nevertheless, there are little conclusive data that pinpoints what are the exact benefits that a given IT design, per se, brings to teaching or learning [1,2,3,4]. As any other technology, we contend, IT should be closely associated to the teaching methodology to be implemented, having into account all the factors that are going to influence all the process. In this article, we will analyse parameters that are considered to be critical if we are to predict the posible success of an IT design.
Resumo:
[EN]One of the main issues of the current education system is the lack of student motivation. This aspect together with the permanent change that the Information and Communications Technologies involve represents a major challenge for the teacher: to continuously update contents and to keep awake the student’s interest. A tremendously useful tool in classrooms consists on the integration of projects with participative and collaborative dynamics, where the teacher acts mainly as a guidance to the student activity instead of being a mere knowledge and evaluation transmitter. As a specific example of project based learning, the EDUROVs project consists on building an economic underwater robot using low cost materials, but allowing the integration and programming of many accessories and sensors with minimum budget using opensource hardware and software.
Resumo:
The thesis of this paper is based on the assumption that the socio-economic system in which we are living is characterised by three great trends: growing attention to the promotion of human capital; extremely rapid technological progress, based above all on the information and communication technologies (ICT); the establishment of new production and organizational set-ups. These transformation processes pose a concrete challenge to the training sector, which is called to satisfy the demand for new skills that need to be developed and disseminated. Hence the growing interest that the various training sub-systems devote to the issues of lifelong learning and distance learning. In such a context, the so-called e-learning acquires a central role. The first chapter proposes a reference theoretical framework for the transformations that are shaping post-industrial society. It analyzes some key issues such as: how work is changing, the evolution of organizational set-ups and the introduction of learning organization, the advent of the knowledge society and of knowledge companies, the innovation of training processes, and the key role of ICT in the new training and learning systems. The second chapter focuses on the topic of e-learning as an effective training model in response to the need for constant learning that is emerging in the knowledge society. This chapter starts with a reflection on the importance of lifelong learning and introduces the key arguments of this thesis, i.e. distance learning (DL) and the didactic methodology called e-learning. It goes on with an analysis of the various theoretic and technical aspects of e-learning. In particular, it delves into the theme of e-learning as an integrated and constant training environment, characterized by customized programmes and collaborative learning, didactic assistance and constant monitoring of the results. Thus, all the aspects of e-learning are taken into exam: the actors and the new professionals, the virtual communities as learning subjects, the organization of contents in learning objects, the conformity to international standards, the integrated platforms and so on. The third chapter, which concludes the theoretic-interpretative part, starts with a short presentation of the state-of-the-art e-learning international market that aims to understand its peculiarities and its current trends. Finally, we focus on some important regulation aspects related to the strong impulse given by the European Commission first, and by the Italian governments secondly, to the development and diffusion of e-learning. The second part of the thesis (chapters 4, 5 and 6) focus on field research, which aims to define the Italian scenario for e-learning. In particular, we have examined some key topics such as: the challenges of training and the instruments to face such challenges; the new didactic methods and technologies for lifelong learning; the level of diffusion of e-learning in Italy; the relation between classroom training and online training; the main factors of success as well as the most critical aspects of the introduction of e-learning in the various learning environments. As far as the methodological aspects are concerned, we have favoured a qualitative and quantitative analysis. A background analysis has been done to collect the statistical data available on this topic, as well as the research previously carried out in this area. The main source of data is constituted by the results of the Observatory on e-learning of Aitech-Assinform, which covers the 2000s and four areas of implementation (firms, public administration, universities, school): the thesis has reviewed the results of the last three available surveys, offering a comparative interpretation of them. We have then carried out an in-depth empirical examination of two case studies, which have been selected by virtue of the excellence they have achieved and can therefore be considered advanced and emblematic experiences (a large firm and a Graduate School).
Resumo:
In the collective imaginaries a robot is a human like machine as any androids in science fiction. However the type of robots that you will encounter most frequently are machinery that do work that is too dangerous, boring or onerous. Most of the robots in the world are of this type. They can be found in auto, medical, manufacturing and space industries. Therefore a robot is a system that contains sensors, control systems, manipulators, power supplies and software all working together to perform a task. The development and use of such a system is an active area of research and one of the main problems is the development of interaction skills with the surrounding environment, which include the ability to grasp objects. To perform this task the robot needs to sense the environment and acquire the object informations, physical attributes that may influence a grasp. Humans can solve this grasping problem easily due to their past experiences, that is why many researchers are approaching it from a machine learning perspective finding grasp of an object using information of already known objects. But humans can select the best grasp amongst a vast repertoire not only considering the physical attributes of the object to grasp but even to obtain a certain effect. This is why in our case the study in the area of robot manipulation is focused on grasping and integrating symbolic tasks with data gained through sensors. The learning model is based on Bayesian Network to encode the statistical dependencies between the data collected by the sensors and the symbolic task. This data representation has several advantages. It allows to take into account the uncertainty of the real world, allowing to deal with sensor noise, encodes notion of causality and provides an unified network for learning. Since the network is actually implemented and based on the human expert knowledge, it is very interesting to implement an automated method to learn the structure as in the future more tasks and object features can be introduced and a complex network design based only on human expert knowledge can become unreliable. Since structure learning algorithms presents some weaknesses, the goal of this thesis is to analyze real data used in the network modeled by the human expert, implement a feasible structure learning approach and compare the results with the network designed by the expert in order to possibly enhance it.
Resumo:
Information is nowadays a key resource: machine learning and data mining techniques have been developed to extract high-level information from great amounts of data. As most data comes in form of unstructured text in natural languages, research on text mining is currently very active and dealing with practical problems. Among these, text categorization deals with the automatic organization of large quantities of documents in priorly defined taxonomies of topic categories, possibly arranged in large hierarchies. In commonly proposed machine learning approaches, classifiers are automatically trained from pre-labeled documents: they can perform very accurate classification, but often require a consistent training set and notable computational effort. Methods for cross-domain text categorization have been proposed, allowing to leverage a set of labeled documents of one domain to classify those of another one. Most methods use advanced statistical techniques, usually involving tuning of parameters. A first contribution presented here is a method based on nearest centroid classification, where profiles of categories are generated from the known domain and then iteratively adapted to the unknown one. Despite being conceptually simple and having easily tuned parameters, this method achieves state-of-the-art accuracy in most benchmark datasets with fast running times. A second, deeper contribution involves the design of a domain-independent model to distinguish the degree and type of relatedness between arbitrary documents and topics, inferred from the different types of semantic relationships between respective representative words, identified by specific search algorithms. The application of this model is tested on both flat and hierarchical text categorization, where it potentially allows the efficient addition of new categories during classification. Results show that classification accuracy still requires improvements, but models generated from one domain are shown to be effectively able to be reused in a different one.
Resumo:
Unique as snowflakes, learning communities are formed in countless ways. Some are designed specifically for first-year students, while others offer combined or clustered upper-level courses. Most involve at least two linked courses, and some add residential and social components. Many address core general education and basic skills requirements. Learning communities differ in design, yet they are similar in striving to enhance students' academic and social growth. First-year learning communities foster experiences that have been linked to academic success and retention. They also offer unique opportunities for librarians interested in collaborating with departmental faculty and enhancing teaching skills. This article will explore one librarian's experiences teaching within three first-year learning communities at Buffalo State College.