942 resultados para Carbonate radical


Relevância:

20.00% 20.00%

Publicador:

Resumo:

3`-Azido-3`-deoxythymidine (zidovudine, AZT), a synthetic analog of natural nucleoside thymidine, has been used extensively in AIDS treatments. We report here the synthesis. X-ray crystal and molecular structure, NMR, IR and Raman spectra and the thermal behavior of a novel carbonate of AZT [(AZT-O)(2)C=O], prepared by the reaction of zidovudine with carbonyldiimidazole. The carbonate compound, C(21)H(24)N(10)O(9), crystallizes in the tetragonal space group P4(1)2(1)2 with a = b = 15.284(1), c = 21.695(1) angstrom, and Z = 8 molecules per unit cell. It consists of two AZT moieties of closely related conformations which are bridged by a carbonyl group to adopt a folded Z-like shape. (C) 2010 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this article we prove that, if (U, ) is a finite dimensional baric algebra of (gamma, delta) type over a field F of characteristic not equal 2,3,5 such that gamma(2) - delta(2) + delta = 1 and 0,1, then rad(U) = R(U)boolean AND(bar(U))(2), where R(U) is the nilradical (maximal nil ideal) of U.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We study here the nonzero composite of three irreducible morphisms between indecomposable modules lying in the fourth power of the radical.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The effects of nitrosative species on cyt c structure and peroxidase activity were investigated here in the presence of O(2)(center dot-) and anionic and zwitterionic vesicles. Nitrosative species were generated by 3-morpholinesydnonymine (SIN1) decomposition, using cyt c heme iron and/or molecular oxygen as electron acceptor. Far-and near-UV CD spectra of SIN1-treated cyt c revealed respectively a slight decrease of a-helix content (from 39 to 34%) and changes in the tryptophan structure accompanied by increased fluorescence. The Soret CD spectra displayed a significant decrease of the positive signal at 403 nm. EPR spectra revealed the presence of a low-spin cyt c form (S = 1/2) with g(1) = 2.736, g(2) = 2.465, and g(3) = 2.058 after incubation with SIN1. These data suggest that the concomitant presence of NO(center dot) and O(2)(center dot-) generated from dissolved oxygen, in a system containing cyt c and liposomes, promotes chemical and conformational modi. cations in cyt c, resulting in a hypothetical bis-histidine hexacoordinated heme iron. We also show that, paradoxically, O(2)(center dot-) prevents not only membrane lipoperoxidation by peroxide-derived radicals but also oxidation of cyt c itself due to the ability of O(2)(center dot-) to reduce heme iron. Finally, lipoperoxidation measurements showed that, although it is a more efficient peroxidase, SIN1-treated cyt c is not more effective than native cyt c in promoting damage to anionic liposomes in the presence of tert-ButylOOH, probably due to loss of affinity with negatively charged lipids. (C) 2009 Elsevier Inc. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Methanolic extract powders of acerola, passion fruit and pineapple industrial residues, including pulp, seeds and peel, altogether (except for acerola) devoid of seeds, were screened for antioxidant capacity. The total phenolic contents (TPCs) of the extract powders were compared with their radical-scavenging activities (RSA) against both DPPH(center dot) and superoxide anion (O(2)(center dot-)) radicals, and their protective effect against liposome peroxidation, triggered by peroxyl radical. Lipid peroxidation was followed by the fluorescence decay of the probe, 4,4-difluoro-5-(4-phenyl-1,3-butadienyl)-4-bora-3a,4a-diaza-s-indacene-3-undecanoic acid (C(11)-BODIPY(581/591)). The TPCs of acerola, passion fruit and pineapple extract powders were (94.6 +/- 7.4); (41.2 +/- 4.2) and (9.1 +/- 1.3) mg of gallic acid equivalents g(-1) of dry extract, respectively. Acerola showed the best RSA-DPPH(center dot) scores, whereas passion fruit was more protective on the RSA-O(2)(center dot-) system. Together with the protective effects against lipid peroxidation (rate of BODIPY decay) which, were similar for acerola and passion fruit extracts, these data suggest that the methanolic extracts of acerola and passion fruit residues may be useful as antioxidant supplements, particularly the acerola extract, due to its high phenolic content. (C) 2008 Elsevier Ltd. All rights reserved

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Despite the therapeutic potential of tempol (4-hydroxy-2,2,6,6-tetra-methyl-1-piperidinyloxy) and related nitroxides as antioxidants, their effects on peroxidase-mediated protein tyrosine nitration remain unexplored. This posttranslational protein modification is a biomarker of nitric oxide-derived oxidants, and, relevantly, it parallels tissue injury in animal models of inflammation and is attenuated by tempol treatment. Here, we examine tempol effects on ribonuclease (RNase) nitration mediated by myeloperoxidase (MPO), a mammalian enzyme that plays a central role in various inflammatory processes.. Some experiments were also performed with horseradish peroxidase (HRP). We show that tempol efficiently inhibits peroxidase-mediated RNase nitration. For instance, 10 mu M tempol was able to inhibit by 90% the yield of 290 mu M 3-nitrotyrosine produced from 370 mu M RNase. The effect of tempol was not completely catalytic because part of it was consumed by recombination with RNase-tyrosyl radicals. The second-order rate constant of the reaction of tempol with MPO compound I and 11 were determined by stopped-flow kinetics as 3.3 x 10(6) and 2.6 x 10(4) M-1 s(-1), respectively (pH 7.4, 25 degrees C); the corresponding HRP constants were orders of magnitude smaller. Time-dependent hydrogen peroxide and nitrite consumption and oxygen production in the incubations were quantified experimentally and modeled by kinetic simulations. The results indicate that tempol inhibits peroxidase-mediated RNase nitration mainly because of its reaction with nitrogen dioxide to produce the oxammonium cation, which, in turn, recycles back to tempol by reacting with hydrogen peroxide and superoxide radical to produce oxygen and regenerate nitrite. The implications for nitroxide antioxidant mechanisms are discussed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Tempol (4-hydroxy-2,2,6,6-tetramethyl-1-piperidinyloxy) has long been known to protect experimental animals from the injury associated with oxidative and inflammatory conditions. In the latter case, a parallel decrease in tissue protein nitration levels has been observed. Protein nitration represents a shift in nitric oxide actions from physiological to pathophysiological and potentially damaging pathways involving its derived oxidants such as nitrogen dioxide and peroxynitrite. In infectious diseases, protein tyrosine nitration of tissues and cells has been taken as evidence for the involvement of nitric oxide-derived oxidants in microbicidal mechanisms. To examine whether tempol inhibits the microbicidal action of macrophages, we investigated its effects on Leishmania amazonensis infection in vitro (RAW 264.7 murine macrophages) and in vivo (C57B1/6 mice). Tempol was administered in the drinking water at 2 mM throughout the experiments and shown to reach infected footpads as the nitroxide plus the hydroxylamine derivative by EPR analysis. At the time of maximum infection (6 weeks), tempol increased footpad lesion size (120%) and parasite burden (150%). In lesion extracts, tempol decreased overall nitric oxide products and expression of inducible nitric oxide synthase to about 80% of the levels in control animals. Nitric oxide-derived products produced by radical mechanisms, such as 3-nitrotyrosine and nitrosothiol, decreased to about 40% of the levels in control mice. The results indicate that tempol worsened L. amazonensis infection by a dual mechanism involving down-regulation of iNOS expression and scavenging of nitric oxide-derived oxidants. Thus, the development of therapeutic strategies based on nitroxides should take into account the potential risk of altering host resistance to parasite infection. (c) 2008 Elsevier Inc. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Diacetyl, like other alpha-dicarbonyl compounds, is reportedly cytotoxic and genotoxic. A food and cigarette contaminant, it is related with alcohol hepatotoxicity and lung disease. Peroxynitrite is a potent oxidant formed in vivo by the diffusion-controlled reaction of the superoxide radical anion with nitric oxide, which is able to form adducts with carbon dioxide and carbonyl compounds. Here, we investigate the nucleophilic addition of peroxynitrite to diacetyl forming acetyl radicals, whose reaction with molecular oxygen leads to acetate. Peroxynitrite is shown to react with diacetyl in phosphate buffer (bell-shaped pH profile with maximum at 7.2) at a very high rate constant (k(2) = 1.0 X 10(4) M-1 s(-1)) when compared with monocarbonyl substrates (k(2) < 10(3) M-1 s(-1)). Phosphate ions (100-500 MM) do not affect the rate of spontaneous peroxynitrite decay, but the H2PO4- anion catalyzes the nucleophilic addition of the peroxynitrite anion to diacetyl. The intermediacy of acetyl radicals is suggested by a three-line spectrum (a(N) = a(H) = 0.83 mT) obtained by EPR spin trapping of the reaction mixture with 2-methyl-2-nitrosopropane. The peroxynitrite reaction is accompanied by concentration-dependent oxygen uptake. Stoichiometric amounts of acetate from millimolar amounts of peroxynitrite and diacetyl were obtained under nonlimiting conditions of dissolved oxygen. In the presence of either L-histidine or 2`-deoxyguanosine, the peroxynitrite/diacetyl system afforded the corresponding acetylated molecules identified by HPLC-MS"". These studies provide evidence that the peroxynitrite/diacetyl reaction yields acetyl radicals and raise the hypothesis that protein and DNA nonenzymatic acetylation may occur in cells and be implicated in aging and metabolic disorders in which oxygen and nitrogen reactive species are putatively involved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Methylglyoxal is an a-oxoaldehyde putatively produced in excess from triose phosphates, aminoacetone, and acetone in some disorders, particularly in diabetes. Here, we investigate the nucleophilic addition of ONOO(-), known as a potent oxidant and nucleophile, to methylglyoxal, yielding an acetyl radical intermediate and ultimately formate and acetate ions. The rate of ONOO(-) decay in the presence of methylglyoxal [k(2,app) = (1.0 +/- 0.1) x 10(3) M(-1) s(-1); k(2) approximate to 1.0 x 10(5) M(-1) s(-1)] at pH 7.2 and 25 degrees C was found to be faster than that reported with monocarbonyl substrates (k(2) < 10(3) M(-1) diacetyl (k(2) = 1.0 x 10(4) M(-1) s(-1)), or CO(2) (k(2) = 3-6 x 10(4) M(-1) s(-1)). The pH profile of the methylglyoxal peroxynitrite reaction describes an ascendant curve with an inflection around pH 7.2, which roughly coincides with the pK(a) values of both ONOOH and H(2)PO(4)(-) ion. Electron paramagnetic resonance spin trapping experiments with 2-methyl-2-nitrosopropane revealed concentration-dependent formation of an adduct that can be attributed to 2-methyl-2-nitrosopropane-CH(3)CO(center dot) (a(N) = 0.83 mT). Spin trapping with 3,5-dibromo-4-nitrosobenzene sulfonate gave a signal that could be assigned to a methyl radical adduct [a(N) = 1.41 mT; a(H) = 1.35 mT; a(H(m)) = 0.08 mT]. The 2-methyl-2-nitrosopropane-CH(3)CO(center dot) adduct could also be observed by replacement of ONOO(-) with H(2)O(2), although at much lower yields. Acetyl radicals could be also trapped by added L-lysine as indicated by the presence of W-acetyl-L-lysine in the spent reaction mixture. This raises the hypothesis that ONOO(-)/H(2)O(2) in the presence of methylglyoxal is endowed with the potential to acetylate proteins in post-translational processes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Multiple sclerosis (MS) is a progressive inflammatory and/or demyelinating disease of the human central nervous system (CNS). Most of the knowledge about the pathogenesis of MS has been derived from murine models, such as experimental autoimmune encephalomyelitis and vital encephalomyelitis. Here, we infected female C57BL/6 mice with a neurotropic strain of the mouse hepatitis virus (MHV-59A) to evaluate whether treatment with the multifunctional antioxidant tempol (4-hydroxy-2,2,6,6-tetramethyl-1-piperidinyloxy) affects the ensuing encephalomyelitis. In untreated animals, neurological symptoms developed quickly: 90% of infected mice died 10 days after virus inoculation and the few survivors presented neurological deficits. Treatment with tempol (24 mg/kg, ip, two doses on the first day and daily doses for 7 days plus 2 mM tempol in the drinking water ad libitum) profoundly altered the disease outcome: neurological symptoms were attenuated, mouse survival increased up to 70%, and half of the survivors behaved as normal mice. Not Surprisingly, tempol substantially preserved the integrity of the CNS, including the blood-brain barrier. Furthermore, treatment with tempol decreased CNS vital titers, macrophage and T lymphocyte infiltration, and levels of markers of inflammation, such as expression of inducible nitric oxide synthase, transcription of tumor necrosis factor-alpha and interferon-gamma, and protein nitration. The results indicate that tempol ameliorates murine viral encephalomyelitis by altering the redox status of the infectious environment that contributes to an attenuated CNS inflammatory response. overall, our study supports the development of therapeutic strategies based on nitroxides to manage neuroinflammatory diseases, including MS. (C) 2009 Elsevier Inc. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The diazocarbene radical, CNN, and the ions CNN(+) and CNN(-) were investigated at a high level of theory. Very accurate structural parameters for the states X(3)Sigma(-) and A(3)Pi of CNN, and X(2)Pi of both CNN(+) and CNN(-) were obtained with the UCCSD(T) method using correlated-consistent basis functions with extrapolations to the complete basis set limit, with valence only and also with all electrons correlated. Harmonic and anharmonic frequencies were obtained for all species and the Renner parameter and average frequencies evaluated for the Pi states. At the UCCSD(T)/CBS(T-5) level of theory, Delta(f)H(0 K) = 138.89 kcal/mol and Delta(f)H(298 K) = 139.65 kcal/mol were obtained for diazocarbene; for the ionization potential and the electron affinity of CNN, 10.969 eV (252.95 kcal/mol), and 1.743 eV (40.19 kcal/mol), respectively, are predicted. Geometry optimization was also carried out with the CASSCF/MRCI/CBS(T-5) approach for the states X(3)Sigma(-) A(3)Pi, and a(1)Delta of CNN, and with the CASSCF/MRSDCI/aug-cc-pVTZ approach for the states b(1)Sigma(+), c(1)Pi, d(1)Sigma(-), and B(3)Sigma(-), and excitation energies (T(e)) evaluated. Vertical energies were calculated for 15 electronic states, thus improving on the accuracy of the five transitions already described, and allowing for a reliable overview of a manifold of other states, which is expected to guide future spectroscopic experiments. This study corroborates the experimental assignment for the vertical transition X (3)Sigma(-) <- E (3)Pi.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The mechanism of the addition reaction of TeCl(4) to alkynes was indirectly established by the detection of TeCl(3) centered radicals using EPR spin trapping, ESI-MS and ESI-MS/MS characterization. Crown Copyright (C) 2008 Published by Elsevier B. V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The [Ru(3)O(H(3)CCO(2))(6)(py)(2)(L)]PF(6) clusters, where L=methanol or dimethyl sulfoxide, can be activated by peroxide or oxygen donor species, such as tert-butyl hydroperoxide (TBHP) or iodosylbenzene (PhIO), respectively, generating reactive intermediates of the type [Ru(3)(IV,IV,III)=0](+). In this way, they catalyse the oxidation of cyclohexane or cyclohexene by TBHP and PhIO, via oxygen atom transfer, rather than by the alternative oxygen radical mechanism characteristic of this type of complexes. In addition to their ability to perform efficient olefin epoxydation catalysis, these clusters also promote the cleavage of the C-H bond in hydrocarbons, resembling the oxidation catalysis by metal porphyrins. (C) 2008 Elsevier Inc. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In the scope of our ongoing researchers on antioxidant compounds, twenty four extracts and fractions obtained from Piper arboreum Aublet and Piper tuberculatum Jacq. (Piperaceae) were screened for radical scavenging capacity (RSC) by using DPPH colorimetric assay. The strongest activity was found in ethyl acetate fractions from the leaves of P. arboreum IC(50) = 5.70 mu g/mL) and P. tuberculatum IC(50) = 8.40 mu g/mL). Hydromethanol fractions of the leaves of P. tuberculatum and P. arboreum showed moderate RSC, with values of IC(50) (mu g/mL) of 11.9 and 19.2, respectively. Additionally, a brief phytochemical study of the ethyl acetate fraction of P. arboreum leaves affording quercetin (1) and quercitrin (2), two flavonols with antioxidant activity previously described in the literature.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We have analysed the effect of spin contamination in the wavefunction of HOOO. At least, two solutions can be found for the HF wavefunction. One, lower in energy, presents a high spin contamination and gives qualitatively incorrect structural parameters. On the other hand, the less contaminated HF reference gives structural parameters that are in better agreement with experiment, and positive spin densities on all atoms. Some of the problems described during previous investigations of HOOO can now be traced to problems in the HF reference. For the first time we report a CCSD(T) estimation of the structure of HOOO cis employing a HF reference with small spin contamination. (C) 2008 Elsevier B.V. All rights reserved.