977 resultados para partial differential equation


Relevância:

80.00% 80.00%

Publicador:

Resumo:

The verification possibilities of dynamically collimated treatment beams with a scanning liquid ionization chamber electronic portal image device (SLIC-EPID) are investigated. The ion concentration in the liquid of a SLIC-EPID and therefore the read-out signal is determined by two parameters of a differential equation describing the creation and recombination of the ions. Due to the form of this equation, the portal image detector describes a nonlinear dynamic system with memory. In this work, the parameters of the differential equation were experimentally determined for the particular chamber in use and for an incident open 6 MV photon beam. The mathematical description of the ion concentration was then used to predict portal images of intensity-modulated photon beams produced by a dynamic delivery technique, the sliding window approach. Due to the nature of the differential equation, a mathematical condition for 'reliable leaf motion verification' in the sliding window technique can be formulated. It is shown that the time constants for both formation and decay of the equilibrium concentration in the chamber is in the order of seconds. In order to guarantee reliable leaf motion verification, these time constants impose a constraint on the rapidity of the image-read out for a given maximum leaf speed. For a leaf speed of 2 cm s(-1), a minimum image acquisition frequency of about 2 Hz is required. Current SLIC-EPID systems are usually too slow since they need about a second to acquire a portal image. However, if the condition is fulfilled, the memory property of the system can be used to reconstruct the leaf motion. It is shown that a simple edge detecting algorithm can be employed to determine the leaf positions. The method is also very robust against image noise.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

In this paper we prove a Lions-type compactness embedding result for symmetric unbounded domains of the Heisenberg group. The natural group action on the Heisenberg group TeX is provided by the unitary group U(n) × {1} and its appropriate subgroups, which will be used to construct subspaces with specific symmetry and compactness properties in the Folland-Stein’s horizontal Sobolev space TeX. As an application, we study the multiplicity of solutions for a singular subelliptic problem by exploiting a technique of solving the Rubik-cube applied to subgroups of U(n) × {1}. In our approach we employ concentration compactness, group-theoretical arguments, and variational methods.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The induction of late long-term potentiation (L-LTP) involves complex interactions among second-messenger cascades. To gain insights into these interactions, a mathematical model was developed for L-LTP induction in the CA1 region of the hippocampus. The differential equation-based model represents actions of protein kinase A (PKA), MAP kinase (MAPK), and CaM kinase II (CAMKII) in the vicinity of the synapse, and activation of transcription by CaM kinase IV (CAMKIV) and MAPK. L-LTP is represented by increases in a synaptic weight. Simulations suggest that steep, supralinear stimulus-response relationships between stimuli (e.g., elevations in [Ca(2+)]) and kinase activation are essential for translating brief stimuli into long-lasting gene activation and synaptic weight increases. Convergence of multiple kinase activities to induce L-LTP helps to generate a threshold whereby the amount of L-LTP varies steeply with the number of brief (tetanic) electrical stimuli. The model simulates tetanic, -burst, pairing-induced, and chemical L-LTP, as well as L-LTP due to synaptic tagging. The model also simulates inhibition of L-LTP by inhibition of MAPK, CAMKII, PKA, or CAMKIV. The model predicts results of experiments to delineate mechanisms underlying L-LTP induction and expression. For example, the cAMP antagonist RpcAMPs, which inhibits L-LTP induction, is predicted to inhibit ERK activation. The model also appears useful to clarify similarities and differences between hippocampal L-LTP and long-term synaptic strengthening in other systems.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

We present a derivation and, based on it, an extension of a model originally proposed by V.G. Niziev to describe continuous wave laser cutting of metals. Starting from a local energy balance and by incorporating heat removal through heat conduction to the bulk material, we find a differential equation for the cutting profile. This equation is solved numerically and yields, besides the cutting profiles, the maximum cutting speed, the absorptivity profiles, and other relevant quantities. Our main goal is to demonstrate the model’s capability to explain some of the experimentally observed differences between laser cutting at around 1 and 10 μm wavelengths. To compare our numerical results to experimental observations, we perform simulations for exactly the same material and laser beam parameters as those used in a recent comparative experimental study. Generally, we find good agreement between theoretical and experimental results and show that the main differences between laser cutting with 1- and 10-μm beams arise from the different absorptivity profiles and absorbed intensities. Especially the latter suggests that the energy transfer, and thus the laser cutting process, is more efficient in the case of laser cutting with 1-μm beams.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

This article centers on the computational performance of the continuous and discontinuous Galerkin time stepping schemes for general first-order initial value problems in R n , with continuous nonlinearities. We briefly review a recent existence result for discrete solutions from [6], and provide a numerical comparison of the two time discretization methods.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

We present a remote sensing observational method for the measurement of the spatio-temporal dynamics of ocean waves. Variational techniques are used to recover a coherent space-time reconstruction of oceanic sea states given stereo video imagery. The stereoscopic reconstruction problem is expressed in a variational optimization framework. There, we design an energy functional whose minimizer is the desired temporal sequence of wave heights. The functional combines photometric observations as well as spatial and temporal regularizers. A nested iterative scheme is devised to numerically solve, via 3-D multigrid methods, the system of partial differential equations resulting from the optimality condition of the energy functional. The output of our method is the coherent, simultaneous estimation of the wave surface height and radiance at multiple snapshots. We demonstrate our algorithm on real data collected off-shore. Statistical and spectral analysis are performed. Comparison with respect to an existing sequential method is analyzed.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Let π : FM ! M be the bundle of linear frames of a manifold M. A basis Lijk , j < k, of diffeomorphism invariant Lagrangians on J1 (FM) was determined in [J. Muñoz Masqué, M. E. Rosado, Invariant variational problems on linear frame bundles, J. Phys. A35 (2002) 2013-2036]. The notion of a characteristic hypersurface for an arbitrary first-order PDE system on an ar- bitrary bred manifold π : P → M, is introduced and for the systems dened by the Euler-Lagrange equations of Lijk every hypersurface is shown to be characteristic. The Euler-Lagrange equations of the natural basis of Lagrangian densities Lijk on the bundle of linear frames of a manifold M which are invariant under diffeomorphisms, are shown to be an underdetermined PDEs systems such that every hypersurface of M is characteristic for such equations. This explains why these systems cannot be written in the Cauchy-Kowaleska form, although they are known to be formally integrable by using the tools of geometric theory of partial differential equations, see [J. Muñoz Masqué, M. E. Rosado, Integrability of the eld equations of invariant variational problems on linear frame bundles, J. Geom. Phys. 49 (2004), 119-155]

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The aim of this paper was to accurately estimate the local truncation error of partial differential equations, that are numerically solved using a finite difference or finite volume approach on structured and unstructured meshes. In this work, we approximated the local truncation error using the @t-estimation procedure, which aims to compare the residuals on a sequence of grids with different spacing. First, we focused the analysis on one-dimensional scalar linear and non-linear test cases to examine the accuracy of the estimation of the truncation error for both finite difference and finite volume approaches on different grid topologies. Then, we extended the analysis to two-dimensional problems: first on linear and non-linear scalar equations and finally on the Euler equations. We demonstrated that this approach yields a highly accurate estimation of the truncation error if some conditions are fulfilled. These conditions are related to the accuracy of the restriction operators, the choice of the boundary conditions, the distortion of the grids and the magnitude of the iteration error.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

We develop a novel remote sensing technique for the observation of waves on the ocean surface. Our method infers the 3-D waveform and radiance of oceanic sea states via a variational stereo imagery formulation. In this setting, the shape and radiance of the wave surface are given by minimizers of a composite energy functional that combines a photometric matching term along with regularization terms involving the smoothness of the unknowns. The desired ocean surface shape and radiance are the solution of a system of coupled partial differential equations derived from the optimality conditions of the energy functional. The proposed method is naturally extended to study the spatiotemporal dynamics of ocean waves and applied to three sets of stereo video data. Statistical and spectral analysis are carried out. Our results provide evidence that the observed omnidirectional wavenumber spectrum S(k) decays as k-2.5 is in agreement with Zakharov's theory (1999). Furthermore, the 3-D spectrum of the reconstructed wave surface is exploited to estimate wave dispersion and currents.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The Boundary Element Method (BEM) is a discretisation technique for solving partial differential equations, which offers, for certain problems, important advantages over domain techniques. Despite the high CPU time reduction that can be achieved, some 3D problems remain today untreatable because the extremely large number of degrees of freedom—dof—involved in the boundary description. Model reduction seems to be an appealing choice for both, accurate and efficient numerical simulations. However, in the BEM the reduction in the number of degrees of freedom does not imply a significant reduction in the CPU time, because in this technique the more important part of the computing time is spent in the construction of the discrete system of equations. In this way, a reduction also in the number of weighting functions, seems to be a key point to render efficient boundary element simulations.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

In the recent decades, meshless methods (MMs), like the element-free Galerkin method (EFGM), have been widely studied and interesting results have been reached when solving partial differential equations. However, such solutions show a problem around boundary conditions, where the accuracy is not adequately achieved. This is caused by the use of moving least squares or residual kernel particle method methods to obtain the shape functions needed in MM, since such methods are good enough in the inner of the integration domains, but not so accurate in boundaries. This way, Bernstein curves, which are a partition of unity themselves,can solve this problem with the same accuracy in the inner area of the domain and at their boundaries.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Combining the kinematical definitions of the two dimensionless parameters, the deceleration q(x) and the Hubble t 0 H(x), we get a differential equation (where x=t/t 0 is the age of the universe relative to its present value t 0). First integration gives the function H(x). The present values of the Hubble parameter H(1) [approximately t 0 H(1)≈1], and the deceleration parameter [approximately q(1)≈−0.5], determine the function H(x). A second integration gives the cosmological scale factor a(x). Differentiation of a(x) gives the speed of expansion of the universe. The evolution of the universe that results from our approach is: an initial extremely fast exponential expansion (inflation), followed by an almost linear expansion (first decelerated, and later accelerated). For the future, at approximately t≈3t 0 there is a final exponential expansion, a second inflation that produces a disaggregation of the universe to infinity. We find the necessary and sufficient conditions for this disaggregation to occur. The precise value of the final age is given only with one parameter: the present value of the deceleration parameter [q(1)≈−0.5]. This emerging picture of the history of the universe represents an important challenge, an opportunity for the immediate research on the Universe. These conclusions have been elaborated without the use of any particular cosmological model of the universe

Relevância:

80.00% 80.00%

Publicador:

Resumo:

We study a system of three partial differential equations modelling the spatiotemporal behaviour of two competitive populations of biological species both of which are attracted chemotactically by the same signal substance. For a range of the parameters the system possesses a uniquely determined spatially homogeneous positive equilibrium (u?, v?) globally asymptotically stable within a certain nonempty range of the logistic growth coefficients.