A model of the roles of essential kinases in the induction and expression of late long-term potentiation.


Autoria(s): Smolen, Paul; Baxter, Douglas A; Byrne, John H
Data(s)

15/04/2006

Resumo

The induction of late long-term potentiation (L-LTP) involves complex interactions among second-messenger cascades. To gain insights into these interactions, a mathematical model was developed for L-LTP induction in the CA1 region of the hippocampus. The differential equation-based model represents actions of protein kinase A (PKA), MAP kinase (MAPK), and CaM kinase II (CAMKII) in the vicinity of the synapse, and activation of transcription by CaM kinase IV (CAMKIV) and MAPK. L-LTP is represented by increases in a synaptic weight. Simulations suggest that steep, supralinear stimulus-response relationships between stimuli (e.g., elevations in [Ca(2+)]) and kinase activation are essential for translating brief stimuli into long-lasting gene activation and synaptic weight increases. Convergence of multiple kinase activities to induce L-LTP helps to generate a threshold whereby the amount of L-LTP varies steeply with the number of brief (tetanic) electrical stimuli. The model simulates tetanic, -burst, pairing-induced, and chemical L-LTP, as well as L-LTP due to synaptic tagging. The model also simulates inhibition of L-LTP by inhibition of MAPK, CAMKII, PKA, or CAMKIV. The model predicts results of experiments to delineate mechanisms underlying L-LTP induction and expression. For example, the cAMP antagonist RpcAMPs, which inhibits L-LTP induction, is predicted to inhibit ERK activation. The model also appears useful to clarify similarities and differences between hippocampal L-LTP and long-term synaptic strengthening in other systems.

Identificador

http://digitalcommons.library.tmc.edu/uthmed_docs/13

Publicador

DigitalCommons@The Texas Medical Center

Fonte

UT Medical School Journal Articles

Palavras-Chave #Animals #Calcium #Calcium-Calmodulin-Dependent Protein Kinase Type 2 #Calcium-Calmodulin-Dependent Protein Kinase Type 4 #Calcium-Calmodulin-Dependent Protein Kinases #Computer Simulation #Cyclic AMP #Cyclic AMP-Dependent Protein Kinases #Enzyme Activation #Hippocampus #Humans #Long-Term Potentiation #Mitogen-Activated Protein Kinases #Models #Neurological #Protein-Serine-Threonine Kinases #Synapses #Transcriptional Activation #Models, Neurological #Medicine and Health Sciences
Tipo

text