872 resultados para computer science, artificial Intelligence


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Bayesian methods offer a flexible and convenient probabilistic learning framework to extract interpretable knowledge from complex and structured data. Such methods can characterize dependencies among multiple levels of hidden variables and share statistical strength across heterogeneous sources. In the first part of this dissertation, we develop two dependent variational inference methods for full posterior approximation in non-conjugate Bayesian models through hierarchical mixture- and copula-based variational proposals, respectively. The proposed methods move beyond the widely used factorized approximation to the posterior and provide generic applicability to a broad class of probabilistic models with minimal model-specific derivations. In the second part of this dissertation, we design probabilistic graphical models to accommodate multimodal data, describe dynamical behaviors and account for task heterogeneity. In particular, the sparse latent factor model is able to reveal common low-dimensional structures from high-dimensional data. We demonstrate the effectiveness of the proposed statistical learning methods on both synthetic and real-world data.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

One of the leading motivations behind the multilingual semantic web is to make resources accessible digitally in an online global multilingual context. Consequently, it is fundamental for knowledge bases to find a way to manage multilingualism and thus be equipped with those procedures for its conceptual modelling. In this context, the goal of this paper is to discuss how common-sense knowledge and cultural knowledge are modelled in a multilingual framework. More particularly, multilingualism and conceptual modelling are dealt with from the perspective of FunGramKB, a lexico-conceptual knowledge base for natural language understanding. This project argues for a clear division between the lexical and the conceptual dimensions of knowledge. Moreover, the conceptual layer is organized into three modules, which result from a strong commitment towards capturing semantic knowledge (Ontology), procedural knowledge (Cognicon) and episodic knowledge (Onomasticon). Cultural mismatches are discussed and formally represented at the three conceptual levels of FunGramKB.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper describes a substantial effort to build a real-time interactive multimodal dialogue system with a focus on emotional and non-verbal interaction capabilities. The work is motivated by the aim to provide technology with competences in perceiving and producing the emotional and non-verbal behaviours required to sustain a conversational dialogue. We present the Sensitive Artificial Listener (SAL) scenario as a setting which seems particularly suited for the study of emotional and non-verbal behaviour, since it requires only very limited verbal understanding on the part of the machine. This scenario allows us to concentrate on non-verbal capabilities without having to address at the same time the challenges of spoken language understanding, task modeling etc. We first summarise three prototype versions of the SAL scenario, in which the behaviour of the Sensitive Artificial Listener characters was determined by a human operator. These prototypes served the purpose of verifying the effectiveness of the SAL scenario and allowed us to collect data required for building system components for analysing and synthesising the respective behaviours. We then describe the fully autonomous integrated real-time system we created, which combines incremental analysis of user behaviour, dialogue management, and synthesis of speaker and listener behaviour of a SAL character displayed as a virtual agent. We discuss principles that should underlie the evaluation of SAL-type systems. Since the system is designed for modularity and reuse, and since it is publicly available, the SAL system has potential as a joint research tool in the affective computing research community.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Cybercriminals ramp up their efforts with sophisticated techniques while defenders gradually update their typical security measures. Attackers often have a long-term interest in their targets. Due to a number of factors such as scale, architecture and nonproductive traffic however it makes difficult to detect them using typical intrusion detection techniques. Cyber early warning systems (CEWS) aim at alerting such attempts in their nascent stages using preliminary indicators. Design and implementation of such systems involves numerous research challenges such as generic set of indicators, intelligence gathering, uncertainty reasoning and information fusion. This paper discusses such challenges and presents the reader with compelling motivation. A carefully deployed empirical analysis using a real world attack scenario and a real network traffic capture is also presented.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The paper describes the design and implementation of a novel low cost virtual rugby decision making interactive for use in a visitor centre. Original laboratory-based experimental work in decision making in rugby, using a virtual reality headset [1] is adapted for use in a public visitor centre, with consideration given to usability, costs, practicality and health and safety. Movement of professional rugby players was captured and animated within a virtually recreated stadium. Users then interact with these virtual representations via use of a lowcost sensor (Microsoft Kinect) to attempt to block them. Retaining the principles of perception and action, egocentric viewpoint, immersion, sense of presence, representative design and game design the system delivers an engaging and effective interactive to illustrate the underlying scientific principles of deceptive movement. User testing highlighted the need for usability, system robustness, fair and accurate scoring, appropriate level of difficulty and enjoyment.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

[EN]We investigate mechanisms which can endow the computer with the ability of describing a human face by means of computer vision techniques. This is a necessary requirement in order to develop HCI approaches which make the user feel himself/herself perceived. This paper describes our experiences considering gender, race and the presence of moustache and glasses. This is accomplished comparing, on a set of 6000 facial images, two di erent face representation approaches: Principal Components Analysis (PCA) and Gabor lters. The results achieved using a Support Vector Machine (SVM) based classi er are promising and particularly better for the second representation approach.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

[EN]Automatic detection systems do not perform as well as human observers, even on simple detection tasks. A potential solution to this problem is training vision systems on appropriate regions of interests (ROIs), in contrast to training on predefined and arbitrarily selected regions. Here we focus on detecting pedestrians in static scenes. Our aim is to answer the following question: Can automatic vision systems for pedestrian detection be improved by training them on perceptually-defined ROIs?

Relevância:

100.00% 100.00%

Publicador:

Resumo:

[EN]In this paper an architecture for an estimator of short-term wind farm power is proposed. The estimator is made up of a Linear Machine classifier and a set of k Multilayer Perceptrons, training each one for a specific subspace of the input space. The splitting of the input dataset into the k clusters is done using a k-means technique, obtaining the equivalent Linear Machine classifier from the cluster centroids...

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Multiphase flows, type oil–water-gas are very common among different industrial activities, such as chemical industries and petroleum extraction, and its measurements show some difficulties to be taken. Precisely determining the volume fraction of each one of the elements that composes a multiphase flow is very important in chemical plants and petroleum industries. This work presents a methodology able to determine volume fraction on Annular and Stratified multiphase flow system with the use of neutrons and artificial intelligence, using the principles of transmission/scattering of fast neutrons from a 241Am-Be source and measurements of point flow that are influenced by variations of volume fractions. The proposed geometries used on the mathematical model was used to obtain a data set where the thicknesses referred of each material had been changed in order to obtain volume fraction of each phase providing 119 compositions that were used in the simulation with MCNP-X –computer code based on Monte Carlo Method that simulates the radiation transport. An artificial neural network (ANN) was trained with data obtained using the MCNP-X, and used to correlate such measurements with the respective real fractions. The ANN was able to correlate the data obtained on the simulation with MCNP-X with the volume fractions of the multiphase flows (oil-water-gas), both in the pattern of annular flow as stratified, resulting in a average relative error (%) for each production set of: annular (air= 3.85; water = 4.31; oil=1.08); stratified (air=3.10, water 2.01, oil = 1.45). The method demonstrated good efficiency in the determination of each material that composes the phases, thus demonstrating the feasibility of the technique.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Abstract Mandevillian intelligence is a specific form of collective intelligence in which individual cognitive vices (i.e., shortcomings, limitations, constraints and biases) are seen to play a positive functional role in yielding collective forms of cognitive success. In this talk, I will introduce the concept of mandevillian intelligence and review a number of strands of empirical research that help to shed light on the phenomenon. I will also attempt to highlight the value of the concept of mandevillian intelligence from a philosophical, scientific and engineering perspective. Inasmuch as we accept the notion of mandevillian intelligence, then it seems that the cognitive and epistemic value of a specific social or technological intervention will vary according to whether our attention is focused at the individual or collective level of analysis. This has a number of important implications for how we think about the cognitive impacts of a number of Web-based technologies (e.g., personalized search mechanisms). It also forces us to take seriously the idea that the exploitation (or even the accentuation!) of individual cognitive shortcomings could, in some situations, provide a productive route to collective forms of cognitive and epistemic success. Speaker Biography Dr Paul Smart Paul Smart is a senior research fellow in the Web and Internet Science research group at the University of Southampton in the UK. He is a Fellow of the British Computer Society, a professional member of the Association of Computing Machinery, and a member of the Cognitive Science Society. Paul’s research interests span a number of disciplines, including philosophy, cognitive science, social science, and computer science. His primary area of research interest relates to the social and cognitive implications of Web and Internet technologies. Paul received his bachelors degree in Psychology from the University of Nottingham. He also holds a PhD in Experimental Psychology from the University of Sussex.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this extended abstract, we discuss recent research at Worcester into the inclusion of AI into ‘Serious Games’. Serious Games research intends to harness the power of computer game technology to produce educational and training materials. We prefer the name ‘Immersive Environments’ (IEs) since this emphasises the human psychological dimension. Creation of compelling and convincing learning software requires a rich engagement of the learner, and a convincing learning experience. We believe that various aspects of the AI tradition can inform the production of such learning.

Relevância:

100.00% 100.00%

Publicador:

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Abstract not available