673 resultados para Weighted learning framework


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Purpose The purpose of this paper is to present what kind of elements and evaluation methods should be included into a framework for evaluating the achievements and impacts of transport projects supported in EC Framework Programmes (FP). Further, the paper discusses the possibilities of such an evaluation framework in producing recommendations regarding future transport research and policy objectives as well as mutual learning for the basis of strategic long term planning. Methods The paper describes the two-dimensional evaluation methodology developed in the course of the FP7 METRONOME project. The dimensions are: (1) achievement of project objectives and targets in different levels and (2) research project impacts according to four impact groups. The methodology uses four complementary approaches in evaluation, namely evaluation matrices, coordinator questionnaires, lead user interviews and workshops. Results Based on the methodology testing, with a sample of FP5 and FP6 projects, the main results relating to the rationale, implementation and achievements of FP projects is presented. In general, achievement of objectives in both FPs was good. Strongest impacts were identified within the impact group of management and co-ordination. Also scientific and end-user impacts of the projects were adequate, but wider societal impacts quite modest. The paper concludes with a discussion both on the theoretical and practical implications of the proposed methodology and by presenting some relevant future research needs.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The concept of Project encompasses a semantic disparity that involves all areas of professional and nonprofessional activity. In the engineering projects domain, and starting by the etymological roots of the terms, a review of the definitions given by different authors and their relation with sociological trends of the last decades is carried out. The engineering projects began as a tool for the development of technological ideas and have been improved with legal, economic and management parameters and recently with environmental aspects. However, the engineering projects involve people, groups, agents, organizations, companies and institutions. Nowadays, the social implications of projects are taken into consideration but the technology for social integration is not consolidated. This communication provides a new framework based on the experience for the development of engineering projects in the context of "human development", placing people in the center of the project

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Las técnicas de cirugía de mínima invasión (CMI) se están consolidando hoy en día como alternativa a la cirugía tradicional, debido a sus numerosos beneficios para los pacientes. Este cambio de paradigma implica que los cirujanos deben aprender una serie de habilidades distintas de aquellas requeridas en cirugía abierta. El entrenamiento y evaluación de estas habilidades se ha convertido en una de las mayores preocupaciones en los programas de formación de cirujanos, debido en gran parte a la presión de una sociedad que exige cirujanos bien preparados y una reducción en el número de errores médicos. Por tanto, se está prestando especial atención a la definición de nuevos programas que permitan el entrenamiento y la evaluación de las habilidades psicomotoras en entornos seguros antes de que los nuevos cirujanos puedan operar sobre pacientes reales. Para tal fin, hospitales y centros de formación están gradualmente incorporando instalaciones de entrenamiento donde los residentes puedan practicar y aprender sin riesgos. Es cada vez más común que estos laboratorios dispongan de simuladores virtuales o simuladores físicos capaces de registrar los movimientos del instrumental de cada residente. Estos simuladores ofrecen una gran variedad de tareas de entrenamiento y evaluación, así como la posibilidad de obtener información objetiva de los ejercicios. Los diferentes estudios de validación llevados a cabo dan muestra de su utilidad; pese a todo, los niveles de evidencia presentados son en muchas ocasiones insuficientes. Lo que es más importante, no existe un consenso claro a la hora de definir qué métricas son más útiles para caracterizar la pericia quirúrgica. El objetivo de esta tesis doctoral es diseñar y validar un marco de trabajo conceptual para la definición y validación de entornos para la evaluación de habilidades en CMI, en base a un modelo en tres fases: pedagógica (tareas y métricas a emplear), tecnológica (tecnologías de adquisición de métricas) y analítica (interpretación de la competencia en base a las métricas). Para tal fin, se describe la implementación práctica de un entorno basado en (1) un sistema de seguimiento de instrumental fundamentado en el análisis del vídeo laparoscópico; y (2) la determinación de la pericia en base a métricas de movimiento del instrumental. Para la fase pedagógica se diseñó e implementó un conjunto de tareas para la evaluación de habilidades psicomotoras básicas, así como una serie de métricas de movimiento. La validación de construcción llevada a cabo sobre ellas mostró buenos resultados para tiempo, camino recorrido, profundidad, velocidad media, aceleración media, economía de área y economía de volumen. Adicionalmente, los resultados obtenidos en la validación de apariencia fueron en general positivos en todos los grupos considerados (noveles, residentes, expertos). Para la fase tecnológica, se introdujo el EVA Tracking System, una solución para el seguimiento del instrumental quirúrgico basado en el análisis del vídeo endoscópico. La precisión del sistema se evaluó a 16,33ppRMS para el seguimiento 2D de la herramienta en la imagen; y a 13mmRMS para el seguimiento espacial de la misma. La validación de construcción con una de las tareas de evaluación mostró buenos resultados para tiempo, camino recorrido, profundidad, velocidad media, aceleración media, economía de área y economía de volumen. La validación concurrente con el TrEndo® Tracking System por su parte presentó valores altos de correlación para 8 de las 9 métricas analizadas. Finalmente, para la fase analítica se comparó el comportamiento de tres clasificadores supervisados a la hora de determinar automáticamente la pericia quirúrgica en base a la información de movimiento del instrumental, basados en aproximaciones lineales (análisis lineal discriminante, LDA), no lineales (máquinas de soporte vectorial, SVM) y difusas (sistemas adaptativos de inferencia neurodifusa, ANFIS). Los resultados muestran que en media SVM presenta un comportamiento ligeramente superior: 78,2% frente a los 71% y 71,7% obtenidos por ANFIS y LDA respectivamente. Sin embargo las diferencias estadísticas medidas entre los tres no fueron demostradas significativas. En general, esta tesis doctoral corrobora las hipótesis de investigación postuladas relativas a la definición de sistemas de evaluación de habilidades para cirugía de mínima invasión, a la utilidad del análisis de vídeo como fuente de información y a la importancia de la información de movimiento de instrumental a la hora de caracterizar la pericia quirúrgica. Basándose en estos cimientos, se han de abrir nuevos campos de investigación que contribuyan a la definición de programas de formación estructurados y objetivos, que puedan garantizar la acreditación de cirujanos sobradamente preparados y promocionen la seguridad del paciente en el quirófano. Abstract Minimally invasive surgery (MIS) techniques have become a standard in many surgical sub-specialties, due to their many benefits for patients. However, this shift in paradigm implies that surgeons must acquire a complete different set of skills than those normally attributed to open surgery. Training and assessment of these skills has become a major concern in surgical learning programmes, especially considering the social demand for better-prepared professionals and for the decrease of medical errors. Therefore, much effort is being put in the definition of structured MIS learning programmes, where practice with real patients in the operating room (OR) can be delayed until the resident can attest for a minimum level of psychomotor competence. To this end, skills’ laboratory settings are being introduced in hospitals and training centres where residents may practice and be assessed on their psychomotor skills. Technological advances in the field of tracking technologies and virtual reality (VR) have enabled the creation of new learning systems such as VR simulators or enhanced box trainers. These systems offer a wide range of tasks, as well as the capability of registering objective data on the trainees’ performance. Validation studies give proof of their usefulness; however, levels of evidence reported are in many cases low. More importantly, there is still no clear consensus on topics such as the optimal metrics that must be used to assess competence, the validity of VR simulation, the portability of tracking technologies into real surgeries (for advanced assessment) or the degree to which the skills measured and obtained in laboratory environments transfer to the OR. The purpose of this PhD is to design and validate a conceptual framework for the definition and validation of MIS assessment environments based on a three-pillared model defining three main stages: pedagogical (tasks and metrics to employ), technological (metric acquisition technologies) and analytical (interpretation of competence based on metrics). To this end, a practical implementation of the framework is presented, focused on (1) a video-based tracking system and (2) the determination of surgical competence based on the laparoscopic instruments’ motionrelated data. The pedagogical stage’s results led to the design and implementation of a set of basic tasks for MIS psychomotor skills’ assessment, as well as the definition of motion analysis parameters (MAPs) to measure performance on said tasks. Validation yielded good construct results for parameters such as time, path length, depth, average speed, average acceleration, economy of area and economy of volume. Additionally, face validation results showed positive acceptance on behalf of the experts, residents and novices. For the technological stage the EVA Tracking System is introduced. EVA provides a solution for tracking laparoscopic instruments from the analysis of the monoscopic video image. Accuracy tests for the system are presented, which yielded an average RMSE of 16.33pp for 2D tracking of the instrument on the image and of 13mm for 3D spatial tracking. A validation experiment was conducted using one of the tasks and the most relevant MAPs. Construct validation showed significant differences for time, path length, depth, average speed, average acceleration, economy of area and economy of volume; especially between novices and residents/experts. More importantly, concurrent validation with the TrEndo® Tracking System presented high correlation values (>0.7) for 8 of the 9 MAPs proposed. Finally, the analytical stage allowed comparing the performance of three different supervised classification strategies in the determination of surgical competence based on motion-related information. The three classifiers were based on linear (linear discriminant analysis, LDA), non-linear (support vector machines, SVM) and fuzzy (adaptive neuro fuzzy inference systems, ANFIS) approaches. Results for SVM show slightly better performance than the other two classifiers: on average, accuracy for LDA, SVM and ANFIS was of 71.7%, 78.2% and 71% respectively. However, when confronted, no statistical significance was found between any of the three. Overall, this PhD corroborates the investigated research hypotheses regarding the definition of MIS assessment systems, the use of endoscopic video analysis as the main source of information and the relevance of motion analysis in the determination of surgical competence. New research fields in the training and assessment of MIS surgeons can be proposed based on these foundations, in order to contribute to the definition of structured and objective learning programmes that guarantee the accreditation of well-prepared professionals and the promotion of patient safety in the OR.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Las Tecnologías de la Información y de las Comunicaciones, ofrecen una buena oportunidad para el desarrollo de comunidades virtuales de aprendizaje, especialmente en el caso de las titulaciones conjuntas entre organizaciones. Estas comunidades permiten a las organizaciones aprovechar mejor las oportunidades de aprendizaje que brindan las tecnologías de Internet, aportando mejores contenidos y experiencias de aprendizaje (Recursos de aprendizaje) tanto para los profesores como para los alumnos. Sin embargo, actualmente no existe una tecnología clara con la que poder federar plataformas de gestión e impartición de titulaciones virtuales (LMS), con la que dar un adecuado soporte a las titulaciones conjuntas. En este trabajo, se presenta una metodología y una arquitectura de federación de plataformas LMS para poder gestionar titulaciones conjuntas en ambiente de e-learning. Actualmente, existe escaso conocimiento acerca de los problemas que están imposibilitando la utilización de estos escenarios. Por ello, este trabajo se presenta como una solución para los miembros de la comunidad (directores, docentes, investigadores y estudiantes), ofreciendo un marco conceptual, que ayuda a entender estos escenarios e identifica los requisitos de diseño que son útiles para generar servicios de aprendizaje accesibles a los miembros de la comunidad (Grid de recursos de aprendizaje) y para integrar los LMS en una nube de titulaciones conjuntas en ambientes de e-learning. Así mismo, en el presente documento se presentan varias experiencias, en las que se han implementado comunidades virtuales de aprendizaje en la ciudad de Cartagena de Indias (Colombia), que han servido para inspirar y validar la solución propuesta en este trabajo. ABSTRACT Information and communication technologies offer a great opportunity for the development of virtual learning communities, like as joint degrees between Organizations. Virtual Learning Communities allow organizations to be more cooperative during training activities via the Internet, with the provision of their learning expertise (learning resource). Internet enables multiple organizations to share their learning expertise with others. In these cooperative knowledge spaces, each organization contributes with their partners providing learning resources that they offer to students and teachers. However, currently there is no clear technology with which to federate Learning Management Systems (LMS) to give adequate support to joint degrees. In this work, we present a description of the problems that would face the generation of the Joint degrees in e-learning environments. Currently little is known about the problems that prevent the formation of virtual learning communities generated from the experience contributed by multiple organizations, so, this work is important for community members (Directors, Teachers, Researchers and practitioners) because it offers a conceptual framework that helps understand these scenarios and can provide useful design requirements when generating learning services for the community (Grid of Learning Resources) and to integrate the LMS in a cloud of joint degrees in e-learning environments. We also propose various experiences in which virtual learning communities have been integrated in Cartagena de Indias (Colombia) which have served to inspire and validate the solution proposed in this paper.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The objective of this thesis is model some processes from the nature as evolution and co-evolution, and proposing some techniques that can ensure that these learning process really happens and useful to solve some complex problems as Go game. The Go game is ancient and very complex game with simple rules which still is a challenge for the Artificial Intelligence. This dissertation cover some approaches that were applied to solve this problem, proposing solve this problem using competitive and cooperative co-evolutionary learning methods and other techniques proposed by the author. To study, implement and prove these methods were used some neural networks structures, a framework free available and coded many programs. The techniques proposed were coded by the author, performed many experiments to find the best configuration to ensure that co-evolution is progressing and discussed the results. Using co-evolutionary learning processes can be observed some pathologies which could impact co-evolution progress. In this dissertation is introduced some techniques to solve pathologies as loss of gradients, cycling dynamics and forgetting. According to some authors, one solution to solve these co-evolution pathologies is introduce more diversity in populations that are evolving. In this thesis is proposed some techniques to introduce more diversity and some diversity measurements for neural networks structures to monitor diversity during co-evolution. The genotype diversity evolved were analyzed in terms of its impact to global fitness of the strategies evolved and their generalization. Additionally, it was introduced a memory mechanism in the network neural structures to reinforce some strategies in the genes of the neurons evolved with the intention that some good strategies learned are not forgotten. In this dissertation is presented some works from other authors in which cooperative and competitive co-evolution has been applied. The Go board size used in this thesis was 9x9, but can be easily escalated to more bigger boards.The author believe that programs coded and techniques introduced in this dissertation can be used for other domains.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This document presents an innovative, formal educational initiative that is aimed at enhancing the development of engineering students’ specific competences when studying Project Management (PM) subject. The framework of the experience combines (1) theoretical concepts, (2) the development of a real-case project carried out by multidisciplinary groups of three different universities, (3) the use of software web 2.0 tools and (4) group and individual assignments of students that play different roles (project managers and team members). Under this scenario, the study focuses on monitoring the communication competence in the ever growing PM virtual environment. Factors such as corporal language, technical means, stage, and PM specific vocabulary among others have been considered in order to assess the students’ performance on this issue. As a main contribution, the paper introduces an ad-hoc rubric that, based on previous investigations, has been adapted and tested for the first time to this new and specific context. Additionally, the research conducted has provided some interesting findings that suggest further actions to improve and better define future rubrics, oriented to communication or even other competences. As specific PM subject concerns, it has been detected that students playing the role of Project Managers strengthen their competences more than those ones that play the role of Team Members. It has also been detected that students have more difficulty assimilating concepts related to risk and quality management. However those concepts related with scope, time or cost areas of knowledge have been better assimilated by the students.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This document presents an innovative, formal educational initiative that is aimed at enhancing the development of engineering students' specific competences. The subject of project management is the common theoretical and practical framework that articulates an experience that is carried out by multidisciplinary groups. Full utilization of Web 2.0 platforms and Project Based Learning constitutes the applied methodology. More specifically, this study focuses on monitoring communication competence when working in virtual environments, providing an ad-hoc rubric as a final result.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The engineer must have sufficient theoretical knowledge to be applied to solve specific problems, with the necessary capacity to simplify these approaches, and taking into account factors such as speed, simplicity, quality and economy. In Geology, its ultimate goal is the exploration of the history of the geological events through observation, deduction, reasoning and, in exceptional cases by the direct underground exploration or experimentation. Experimentation is very limited in Geology. Reproduction laboratory of certain phenomena or geological processes is difficult because both time and space become a large scale. For this reason, some Earth Sciences are in a nearly descriptive stage whereas others closest to the experimental, Geophysics and Geochemistry, have assimilated progress experienced by the physics and chemistry. Thus, Anglo-Saxon countries clearly separate Engineering Geology from Geological Engineering, i.e. Applied Geology to the Geological Engineering concepts. Although there is a big professional overlap, the first one corresponds to scientific approach, while the last one corresponds to a technological one. Applied Geology to Engineering could be defined as the Science and Applied Geology to the design, construction and performance of engineering infrastructures in and field geology discipline. There has been much discussion on the primacy of theory over practice. Today prevails the exaggeration of practice, but you get good workers and routine and mediocre teachers. This idea forgets too that teaching problem is a problem of right balance. The approach of the action lines on the European Higher Education Area (EHEA) framework provides for such balance. Applied Geology subject represents the first real contact with the physical environment with the practice profession and works. Besides, the situation of the topic in the first trace of Study Plans for many students implies the link to other subjects and topics of the career (tunnels, dams, groundwater, roads, etc). This work analyses in depth the justification of such practical trips. It shows the criteria and methods of planning and the result which manifests itself in pupils. Once practical trips experience developed, the objective work tries to know about results and changes on student’s motivation in learning perspective. This is done regardless of the outcome of their knowledge achievements assessed properly and they are not subject to such work. For this objective, it has been designed a survey about their motivation before and after trip. Survey was made by the Unidad Docente de Geología Aplicada of the Departamento de Ingeniería y Morfología del Terreno (Escuela Técnica Superior de Ingenieros de Caminos, Canales y Puertos, Universidad Politécnica de Madrid). It was completely anonymous. Its objective was to collect the opinion of the student as a key agent of learning and teaching of the subject. All the work takes place under new teaching/learning criteria approach at the European framework in Higher Education. The results are exceptionally good with 90% of student’s participation and with very high scores in a number of questions as the itineraries, teachers and visited places (range of 4.5 to 4.2 in a 5 points scale). The majority of students are very satisfied (average of 4.5 in a 5 points scale).

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Neuronal morphology is a key feature in the study of brain circuits, as it is highly related to information processing and functional identification. Neuronal morphology affects the process of integration of inputs from other neurons and determines the neurons which receive the output of the neurons. Different parts of the neurons can operate semi-independently according to the spatial location of the synaptic connections. As a result, there is considerable interest in the analysis of the microanatomy of nervous cells since it constitutes an excellent tool for better understanding cortical function. However, the morphologies, molecular features and electrophysiological properties of neuronal cells are extremely variable. Except for some special cases, this variability makes it hard to find a set of features that unambiguously define a neuronal type. In addition, there are distinct types of neurons in particular regions of the brain. This morphological variability makes the analysis and modeling of neuronal morphology a challenge. Uncertainty is a key feature in many complex real-world problems. Probability theory provides a framework for modeling and reasoning with uncertainty. Probabilistic graphical models combine statistical theory and graph theory to provide a tool for managing domains with uncertainty. In particular, we focus on Bayesian networks, the most commonly used probabilistic graphical model. In this dissertation, we design new methods for learning Bayesian networks and apply them to the problem of modeling and analyzing morphological data from neurons. The morphology of a neuron can be quantified using a number of measurements, e.g., the length of the dendrites and the axon, the number of bifurcations, the direction of the dendrites and the axon, etc. These measurements can be modeled as discrete or continuous data. The continuous data can be linear (e.g., the length or the width of a dendrite) or directional (e.g., the direction of the axon). These data may follow complex probability distributions and may not fit any known parametric distribution. Modeling this kind of problems using hybrid Bayesian networks with discrete, linear and directional variables poses a number of challenges regarding learning from data, inference, etc. In this dissertation, we propose a method for modeling and simulating basal dendritic trees from pyramidal neurons using Bayesian networks to capture the interactions between the variables in the problem domain. A complete set of variables is measured from the dendrites, and a learning algorithm is applied to find the structure and estimate the parameters of the probability distributions included in the Bayesian networks. Then, a simulation algorithm is used to build the virtual dendrites by sampling values from the Bayesian networks, and a thorough evaluation is performed to show the model’s ability to generate realistic dendrites. In this first approach, the variables are discretized so that discrete Bayesian networks can be learned and simulated. Then, we address the problem of learning hybrid Bayesian networks with different kinds of variables. Mixtures of polynomials have been proposed as a way of representing probability densities in hybrid Bayesian networks. We present a method for learning mixtures of polynomials approximations of one-dimensional, multidimensional and conditional probability densities from data. The method is based on basis spline interpolation, where a density is approximated as a linear combination of basis splines. The proposed algorithms are evaluated using artificial datasets. We also use the proposed methods as a non-parametric density estimation technique in Bayesian network classifiers. Next, we address the problem of including directional data in Bayesian networks. These data have some special properties that rule out the use of classical statistics. Therefore, different distributions and statistics, such as the univariate von Mises and the multivariate von Mises–Fisher distributions, should be used to deal with this kind of information. In particular, we extend the naive Bayes classifier to the case where the conditional probability distributions of the predictive variables given the class follow either of these distributions. We consider the simple scenario, where only directional predictive variables are used, and the hybrid case, where discrete, Gaussian and directional distributions are mixed. The classifier decision functions and their decision surfaces are studied at length. Artificial examples are used to illustrate the behavior of the classifiers. The proposed classifiers are empirically evaluated over real datasets. We also study the problem of interneuron classification. An extensive group of experts is asked to classify a set of neurons according to their most prominent anatomical features. A web application is developed to retrieve the experts’ classifications. We compute agreement measures to analyze the consensus between the experts when classifying the neurons. Using Bayesian networks and clustering algorithms on the resulting data, we investigate the suitability of the anatomical terms and neuron types commonly used in the literature. Additionally, we apply supervised learning approaches to automatically classify interneurons using the values of their morphological measurements. Then, a methodology for building a model which captures the opinions of all the experts is presented. First, one Bayesian network is learned for each expert, and we propose an algorithm for clustering Bayesian networks corresponding to experts with similar behaviors. Then, a Bayesian network which represents the opinions of each group of experts is induced. Finally, a consensus Bayesian multinet which models the opinions of the whole group of experts is built. A thorough analysis of the consensus model identifies different behaviors between the experts when classifying the interneurons in the experiment. A set of characterizing morphological traits for the neuronal types can be defined by performing inference in the Bayesian multinet. These findings are used to validate the model and to gain some insights into neuron morphology. Finally, we study a classification problem where the true class label of the training instances is not known. Instead, a set of class labels is available for each instance. This is inspired by the neuron classification problem, where a group of experts is asked to individually provide a class label for each instance. We propose a novel approach for learning Bayesian networks using count vectors which represent the number of experts who selected each class label for each instance. These Bayesian networks are evaluated using artificial datasets from supervised learning problems. Resumen La morfología neuronal es una característica clave en el estudio de los circuitos cerebrales, ya que está altamente relacionada con el procesado de información y con los roles funcionales. La morfología neuronal afecta al proceso de integración de las señales de entrada y determina las neuronas que reciben las salidas de otras neuronas. Las diferentes partes de la neurona pueden operar de forma semi-independiente de acuerdo a la localización espacial de las conexiones sinápticas. Por tanto, existe un interés considerable en el análisis de la microanatomía de las células nerviosas, ya que constituye una excelente herramienta para comprender mejor el funcionamiento de la corteza cerebral. Sin embargo, las propiedades morfológicas, moleculares y electrofisiológicas de las células neuronales son extremadamente variables. Excepto en algunos casos especiales, esta variabilidad morfológica dificulta la definición de un conjunto de características que distingan claramente un tipo neuronal. Además, existen diferentes tipos de neuronas en regiones particulares del cerebro. La variabilidad neuronal hace que el análisis y el modelado de la morfología neuronal sean un importante reto científico. La incertidumbre es una propiedad clave en muchos problemas reales. La teoría de la probabilidad proporciona un marco para modelar y razonar bajo incertidumbre. Los modelos gráficos probabilísticos combinan la teoría estadística y la teoría de grafos con el objetivo de proporcionar una herramienta con la que trabajar bajo incertidumbre. En particular, nos centraremos en las redes bayesianas, el modelo más utilizado dentro de los modelos gráficos probabilísticos. En esta tesis hemos diseñado nuevos métodos para aprender redes bayesianas, inspirados por y aplicados al problema del modelado y análisis de datos morfológicos de neuronas. La morfología de una neurona puede ser cuantificada usando una serie de medidas, por ejemplo, la longitud de las dendritas y el axón, el número de bifurcaciones, la dirección de las dendritas y el axón, etc. Estas medidas pueden ser modeladas como datos continuos o discretos. A su vez, los datos continuos pueden ser lineales (por ejemplo, la longitud o la anchura de una dendrita) o direccionales (por ejemplo, la dirección del axón). Estos datos pueden llegar a seguir distribuciones de probabilidad muy complejas y pueden no ajustarse a ninguna distribución paramétrica conocida. El modelado de este tipo de problemas con redes bayesianas híbridas incluyendo variables discretas, lineales y direccionales presenta una serie de retos en relación al aprendizaje a partir de datos, la inferencia, etc. En esta tesis se propone un método para modelar y simular árboles dendríticos basales de neuronas piramidales usando redes bayesianas para capturar las interacciones entre las variables del problema. Para ello, se mide un amplio conjunto de variables de las dendritas y se aplica un algoritmo de aprendizaje con el que se aprende la estructura y se estiman los parámetros de las distribuciones de probabilidad que constituyen las redes bayesianas. Después, se usa un algoritmo de simulación para construir dendritas virtuales mediante el muestreo de valores de las redes bayesianas. Finalmente, se lleva a cabo una profunda evaluaci ón para verificar la capacidad del modelo a la hora de generar dendritas realistas. En esta primera aproximación, las variables fueron discretizadas para poder aprender y muestrear las redes bayesianas. A continuación, se aborda el problema del aprendizaje de redes bayesianas con diferentes tipos de variables. Las mixturas de polinomios constituyen un método para representar densidades de probabilidad en redes bayesianas híbridas. Presentamos un método para aprender aproximaciones de densidades unidimensionales, multidimensionales y condicionales a partir de datos utilizando mixturas de polinomios. El método se basa en interpolación con splines, que aproxima una densidad como una combinación lineal de splines. Los algoritmos propuestos se evalúan utilizando bases de datos artificiales. Además, las mixturas de polinomios son utilizadas como un método no paramétrico de estimación de densidades para clasificadores basados en redes bayesianas. Después, se estudia el problema de incluir información direccional en redes bayesianas. Este tipo de datos presenta una serie de características especiales que impiden el uso de las técnicas estadísticas clásicas. Por ello, para manejar este tipo de información se deben usar estadísticos y distribuciones de probabilidad específicos, como la distribución univariante von Mises y la distribución multivariante von Mises–Fisher. En concreto, en esta tesis extendemos el clasificador naive Bayes al caso en el que las distribuciones de probabilidad condicionada de las variables predictoras dada la clase siguen alguna de estas distribuciones. Se estudia el caso base, en el que sólo se utilizan variables direccionales, y el caso híbrido, en el que variables discretas, lineales y direccionales aparecen mezcladas. También se estudian los clasificadores desde un punto de vista teórico, derivando sus funciones de decisión y las superficies de decisión asociadas. El comportamiento de los clasificadores se ilustra utilizando bases de datos artificiales. Además, los clasificadores son evaluados empíricamente utilizando bases de datos reales. También se estudia el problema de la clasificación de interneuronas. Desarrollamos una aplicación web que permite a un grupo de expertos clasificar un conjunto de neuronas de acuerdo a sus características morfológicas más destacadas. Se utilizan medidas de concordancia para analizar el consenso entre los expertos a la hora de clasificar las neuronas. Se investiga la idoneidad de los términos anatómicos y de los tipos neuronales utilizados frecuentemente en la literatura a través del análisis de redes bayesianas y la aplicación de algoritmos de clustering. Además, se aplican técnicas de aprendizaje supervisado con el objetivo de clasificar de forma automática las interneuronas a partir de sus valores morfológicos. A continuación, se presenta una metodología para construir un modelo que captura las opiniones de todos los expertos. Primero, se genera una red bayesiana para cada experto y se propone un algoritmo para agrupar las redes bayesianas que se corresponden con expertos con comportamientos similares. Después, se induce una red bayesiana que modela la opinión de cada grupo de expertos. Por último, se construye una multired bayesiana que modela las opiniones del conjunto completo de expertos. El análisis del modelo consensuado permite identificar diferentes comportamientos entre los expertos a la hora de clasificar las neuronas. Además, permite extraer un conjunto de características morfológicas relevantes para cada uno de los tipos neuronales mediante inferencia con la multired bayesiana. Estos descubrimientos se utilizan para validar el modelo y constituyen información relevante acerca de la morfología neuronal. Por último, se estudia un problema de clasificación en el que la etiqueta de clase de los datos de entrenamiento es incierta. En cambio, disponemos de un conjunto de etiquetas para cada instancia. Este problema está inspirado en el problema de la clasificación de neuronas, en el que un grupo de expertos proporciona una etiqueta de clase para cada instancia de manera individual. Se propone un método para aprender redes bayesianas utilizando vectores de cuentas, que representan el número de expertos que seleccionan cada etiqueta de clase para cada instancia. Estas redes bayesianas se evalúan utilizando bases de datos artificiales de problemas de aprendizaje supervisado.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In the framework of the OECD/NEA project on Benchmark for Uncertainty Analysis in Modeling (UAM) for Design, Operation, and Safety Analysis of LWRs, several approaches and codes are being used to deal with the exercises proposed in Phase I, “Specifications and Support Data for Neutronics Cases.” At UPM, our research group treats these exercises with sensitivity calculations and the “sandwich formula” to propagate cross-section uncertainties. Two different codes are employed to calculate the sensitivity coefficients of to cross sections in criticality calculations: MCNPX-2.7e and SCALE-6.1. The former uses the Differential Operator Technique and the latter uses the Adjoint-Weighted Technique. In this paper, the main results for exercise I-2 “Lattice Physics” are presented for the criticality calculations of PWR. These criticality calculations are done for a TMI fuel assembly at four different states: HZP-Unrodded, HZP-Rodded, HFP-Unrodded, and HFP-Rodded. The results of the two different codes above are presented and compared. The comparison proves a good agreement between SCALE-6.1 and MCNPX-2.7e in uncertainty that comes from the sensitivity coefficients calculated by both codes. Differences are found when the sensitivity profiles are analysed, but they do not lead to differences in the uncertainty.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

El presente documento aborda la problemática surgida en torno al desarrollo de una plataforma para gestionar las guías docentes de la Universidad Politécnica de Madrid, centrándose en el uso de las tecnologías Javascript, así como de lo algoritmos, plugins y bibliotecas auxiliares creadas y utilizadas. Por último, se muestran los resultados obtenidos del análisis y puesta en práctica de lo expuesto en el documento, así como conclusiones y sugerencias de futuras líneas de trabajo para este mismo proyecto. ---ABSTRACT---This document explains the problems found when developing a web service whose purpose is the management of learning guides at \Universidad Politecnica de Madrid". This final thesis focus on the use of Javascript technologies and the plugins, algorithms and auxiliar libraries used and developed. Finally, results of the analysis, development of the ideas exposed in this document, and conclusions and future working lines are presented.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper aims to outline a theory-based Content and Language Integrated Learning course and to establish the rationale for adopting a holistic approach to the teaching of languages in tertiary education. Our work focuses on the interdependence between Content and Language Integrated Learning (CLIL), and the use of Information and Communication Technologies (ICT), in particular regarding the learning of English within the framework of Telecommunications Engineering. The study first analyses the diverse components of the instructional approach and the extent to which this approach interrelates with technologies within the context of what we have defined as a holistic experience, since it also aims to develop a set of generic competences or transferable skills. Second, an example of a course project framed in this holistic approach is described in order to exemplify the specific actions suggested for learner autonomy and CLIL. The approach provides both an adequate framework as well as the conditions needed to carry out a lifelong learning experience within our context, a Spanish School of Engineering. In addition to specialized language and content, the approach integrates the learning of skills and capacities required by the new plans that have been established following the Bologna Declaration in 1999.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This study suggests a theoretical framework for improving the teaching/ learning process of English employed in the Aeronautical discourse that brings together cognitive learning strategies, Genre Analysis and the Contemporary theory of Metaphor (Lakoff and Johnson 1980; Lakoff 1993). It maintains that cognitive strategies such as imagery, deduction, inference and grouping can be enhanced by means of metaphor and genre awareness in the context of content based approach to language learning. A list of image metaphors and conceptual metaphors which comes from the terminological database METACITEC is provided. The metaphorical terms from the area of Aeronautics have been taken from specialised dictionaries and have been categorised according to the conceptual metaphors they respond to, by establishing the source domains and the target domains, as well as the semantic networks found. This information makes reference to the internal mappings underlying the discourse of aeronautics reflected in five aviation accident case studies which are related to accident reports from the National Transportation Safety Board (NTSB) and provides an important source for designing language teaching tasks. La Lingüística Cognitiva y el Análisis del Género han contribuido a la mejora de la enseñanza de segundas lenguas y, en particular, al desarrollo de la competencia lingüística de los alumnos de inglés para fines específicos. Este trabajo pretende perfeccionar los procesos de enseñanza y el aprendizaje del lenguaje empleado en el discurso aeronáutico por medio de la práctica de estrategias cognitivas y prestando atención a la Teoría del análisis del género y a la Teoría contemporánea de la metáfora (Lakoff y Johnson 1980; Lakoff 1993). Con el propósito de crear recursos didácticos en los que se apliquen estrategias metafóricas, se ha elaborado un listado de metáforas de imagen y de metáforas conceptuales proveniente de la base de datos terminológica META-CITEC. Estos términos se han clasificado de acuerdo con las metáforas conceptuales y de imagen existentes en esta área de conocimiento. Para la enseñanza de este lenguaje de especialidad, se proponen las correspondencias y las proyecciones entre el dominio origen y el dominio meta que se han hallado en los informes de accidentes aéreos tomados de la Junta federal de la Seguridad en el Transporte (NTSB)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Residents learning nontechnical skills in Europe face two problems: (1) the difficulty to fit learning time in their overloaded schedules; and (2) the lack of standard pedagogical models for all countries. Online video-based repositories such as WeBSurg or WebOP provide ubiquitous access to surgical contents. However, their pedagogical facets have not been fully exploited and they are often seen as quick-reference repositories rather than full e-learning alternatives. We present a new pedagogically-supported Technology Enhanced Learning (TEL) solution, MISTELA, designed by surgeons, pedagogical experts and engineers. MISTELA aims at building a common European pedagogical model supported by ICT technologies and elearning. The solution proposes a pedagogical model based on a framework for pedagogically-informed design of e-learning platforms. It is composed of (1) an authoring tool for editing and augmenting videos; (2) a media asset management system; and (3) a virtual learning environment. Support of the European Association for Endoscopic Surgery (EAES) and validation of the solution, will help to determine its full potential.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Probabilistic graphical models are a huge research field in artificial intelligence nowadays. The scope of this work is the study of directed graphical models for the representation of discrete distributions. Two of the main research topics related to this area focus on performing inference over graphical models and on learning graphical models from data. Traditionally, the inference process and the learning process have been treated separately, but given that the learned models structure marks the inference complexity, this kind of strategies will sometimes produce very inefficient models. With the purpose of learning thinner models, in this master thesis we propose a new model for the representation of network polynomials, which we call polynomial trees. Polynomial trees are a complementary representation for Bayesian networks that allows an efficient evaluation of the inference complexity and provides a framework for exact inference. We also propose a set of methods for the incremental compilation of polynomial trees and an algorithm for learning polynomial trees from data using a greedy score+search method that includes the inference complexity as a penalization in the scoring function.