909 resultados para Uninterruptible power supply
Resumo:
This paper presents experimental results of an analog baseband circuit for China Multimedia Mobile Broadcasting (CMMB) direct conversion receiver in 0.35um SiGe BiCMOS process. It is the first baseband of CMMB RFIC reported so far. A 8(th)-order chebyshev low pass filter (LPF) with calibration system is used in the analog baseband circuit, the filter provides 0.5 dB passband ripple and -35 dB attenuation at 6MHz with the cutoff frequency at 4MHz, the calibration of filter is reported to achieve the bandwidth accuracy of 3%. The baseband variable gain amplifier (VGA) achieves more than 40 dB gain tuning with temperature compensation. In addition, A DC offset cancellation circuit is also introduced to remove the offset from layout and self-mixing, and the remaining offset voltage and current consumption are only 6mV and 412uA respectively. Implemented in a 0.35um SiGe technology with 1.1 mm(2) die size, this tuner baseband achieves OIP3 of 25.5 dBm and dissipate 16.4 mA under 2.8-V supply.
Resumo:
In this paper, a low-power, highly linear, integrated, active-RC filter exhibiting a multi-standard (IEEE 802.11a/b/g and DVB-H) application and bandwidth (3MHz, 4MHz, 9.5MHz) is present. The filter exploits digitally-controlled polysilicon resister banks and an accurate automatic tuning scheme to account for process and temperature variations. The automatic frequency calibration scheme provides better than 3% corner frequency accuracy. The Butterworth filter is design for receiver (WLAN and DVB-H mode) and transmitter (WLAN mode). The filter dissipation is 3.4 mA in RX mode and 2.3 mA (only for one path) in TX mode from 2.85-V supply. The dissipation of calibration consumes 2mA. The circuit has been fabricated in a 0.35um 47-GHz SiGe BiCMOS technology, the receiver and transmitter occupy 0.28-mm(2) and 0.16-mm(2) (calibration circuit excluded), respectively.
Resumo:
This paper presents a wide tuning range CMOS frequency synthesizer for dual-band GPS receiver, which has been fabricated in a standard 0.18-um RF CMOS process. With a high Q on-chip inductor, the wide-band VCO shows a tuning range from 2 to 3.6GHz to cover 2.45GHz and 3.14GHz in case of process corner or temperature variation, with a current consumption varying accordingly from 0.8mA to 0.4mA, from a 1.8V supply voltage. The measurement results show that the whole frequency synthesizer costs a very low power consumption of 5.6mW working at L I band with in-band phase noise less than -82dBc/Hz and out-of-band phase noise about -112 dBc/Hz at 1MHz offset from a 3.142GHz carrier.
Resumo:
An ultra low power non-volatile memory is designed in a standard CMOS process for passive RFID tags. The memory can operate in a new low power operating scheme under a wide supply voltage and clock frequency range. In the charge pump circuit the threshold voltage effect of the switch transistor is almost eliminated and the pumping efficiency of the circuit is improved. An ultra low power 192-bit memory with a register array is implemented in a 0.18 mu M standard CMOS process. The measured results indicate that, for the supply voltage of 1.2 volts and the clock frequency of 780KHz, the current consumption of the memory is 1.8 mu A (3.6 mu A) at the read (write) rate of 1.3Mb/s (0.8Kb/s).
Resumo:
An analog baseband circuit made in a 0.35-μm SiGe BiCMOS process is presented for China Multimedia Mobile Broadcasting (CMMB) direct conversion receivers. A high linearity 8th-order Chebyshev low pass filter (LPF) with accurate calibration system is used. Measurement results show that the filter provides 0.5-dB pass-band ripple, 4% bandwidth accuracy, and -35-dB attenuation at 6 MHz with a cutoff frequency of 4 MHz. The current steering type variable gain amplifier (VGA) achieves more than 40-dB gain range with excellent temperature compensation.This tuner baseband achieves an OIP3 of 25.5 dBm, dissipates 16.4 mA under a 2.8-V supply and occupies 1.1 mm~2 of die size.
Resumo:
This paper presents a wide tuning range CMOS frequency synthesizer for a dual-band GPS receiver,which has been fabricated in a standard 0.18μm RF CMOS process. With a high Q on-chip inductor, the wide-band VCO shows a tuning range from 2 to 3.6GHz to cover 2.45 and 3.14GHz in case of process corner or temperature variation,with a current consumption varying accordingly from 0.8 to 0.4mA,from a 1.8V supply voltage. Measurement results show that the whole frequency synthesizer consumes very low power of 5.6mW working at L1 band with in-band phase noise less than - 82dBc/Hz and out-of-band phase noise about - ll2dBc/Hz at 1MHz offset from a 3. 142GHz carrier. The performance of the frequency synthesizer meets the requirements of GPS applications very well.
Resumo:
Wind power generation differs from conventional thermal generation due to the stochastic nature of wind. Thus wind power forecasting plays a key role in dealing with the challenges of balancing supply and demand in any electricity system, given the uncertainty associated with the wind farm power output. Accurate wind power forecasting reduces the need for additional balancing energy and reserve power to integrate wind power. Wind power forecasting tools enable better dispatch, scheduling and unit commitment of thermal generators, hydro plant and energy storage plant and more competitive market trading as wind power ramps up and down on the grid. This paper presents an in-depth review of the current methods and advances in wind power forecasting and prediction. Firstly, numerical wind prediction methods from global to local scales, ensemble forecasting, upscaling and downscaling processes are discussed. Next the statistical and machine learning approach methods are detailed. Then the techniques used for benchmarking and uncertainty analysis of forecasts are overviewed, and the performance of various approaches over different forecast time horizons is examined. Finally, current research activities, challenges and potential future developments are appraised.
Resumo:
An analysis of a modified series-L/parallel-tuned Class-E power amplifier is presented, which includes the effects that a shunt capacitance placed across the switching device will have on Class-E behaviour. In the original series L/parallel-tuned topology in which the output transistor capacitance is not inherently included in the circuit, zero-current switching (ZCS) and zero-current derivative switching (ZCDS) conditions should be applied to obtain optimum Class-E operation. On the other hand, when the output transistor capacitance is incorporated in the circuit, i.e. in the modified series-L/parallel-tuned topology, the ZCS and ZCDS would not give optimum operation and therefore zero-voltage-switching (ZVS) and zero-voltage-derivative switching (ZVDS) conditions should be applied instead. In the modified series-L/parallel-tuned Class-E configuration, the output-device inductance and the output-device output capacitance, both of which can significantly affect the amplifier's performance at microwave frequencies, furnish part, if not all, of the series inductance L and the shunt capacitance COUT, respectively. Further, when compared with the classic shunt-C/series-tuned topology, the proposed Class-E configuration offers some advantages in terms of 44% higher maximum operating frequency (fMAX) and 4% higher power-output capability (PMAX). As in the classic topology, the fMAX of the proposed amplifier circuit is reached when the output-device output capacitance furnishes all of the capacitance COUT, for a given combination of frequency, output power and DC supply voltage. It is also shown that numerical simulations agree well with theoretical predictions.
Resumo:
Closed-form design equations for the operation of a class-E amplifier for zero switch voltage slope and arbitrary duty cycle are derived. This approach allows an additional degree of freedom in the design of class-E amplifiers which are normally designed for 50 duty ratio. The analysis developed permits the selection of non-unique solutions where amplifier efficiency is theoretically 100 but power output capability is less than that the 50 duty ratio case would permit. To facilitate comparison between 50 (optimal) and non-50 (suboptimal) duty ratio cases, each important amplifier parameter is normalised to its corresponding optimum operation value. It is shown that by choosing a non-50 suboptimal solution, the operating frequency of a class-E amplifier can be extended. In addition, it is shown that by operating the amplifier in the suboptimal regime, other amplifier parameters, for example, transistor output capacitance or peak switch voltage, can be included along with the standard specification criteria of output power, DC supply voltage and operating frequency as additional input design specifications. Suboptimum class-E operation may have potential advantages for monolithic microwave integrated circuit realisation as lower inductance values (lower series resistance, higher self-resonance frequency, less area) may be required when compared with the results obtained for optimal class-E amplifier synthesis. The theoretical analysis conducted here was verified by harmonic balance simulation, with excellent agreement between both methods. © The Institution of Engineering and Technology 2007.
Resumo:
The design procedure, fabrication and measurement of a Class-E power amplifier with excellent second- and third-harmonic suppression levels are presented. A simplified design technique offering compact physical layout is proposed. With a 1.2 mm gate-width GaAs MESFET as a switching device, the amplifier is capable of delivering 19.2 dBm output power at 2.41 GHz, achieves peak PAE of 60% and drain efficiency of 69%, and exhibits 9 dB power gain when operated from a 3 V DC supply voltage. When compared to the classical Class-E two-harmonic termination amplifier, the Class-E amplifier employing three-harmonic terminations has more than 10% higher drain efficiency and 23 dB better third-harmonic suppression level. Experimental results are presented and good agreement with simulation is obtained. Further, to verify the practical implementation in communication systems, the Bluetooth-standard GFSK modulated signal is applied to both two- and three-harmonic amplifiers. The measured RMS FSK deviation error and RMS magnitude error were, for the three-harmonic case, 1.01 kHz and 0.122%, respectively, and, for the two-harmonic case, 1.09 kHz and 0.133%. © 2007 The Institution of Engineering and Technology.
Resumo:
A recently introduced power-combining scheme for a Class-E amplifier is, for the first time, experimentally validated in this paper. A small value choke of 2.2 nH was used to substitute for the massive dc-feed inductance required in the classic Class-E circuit. The power-combining amplifier presented, which operates from a 3.2-V dc supply voltage, is shown to be able to deliver a 24-dBm output power and a 9.5-dB gain, with 64% drain efficiency and 57% power-added efficiency at 2.4 GHz. The power amplifier exhibits a 350-MHz bandwidth within which a drain efficiency that is better than 60% and an output power that is higher than 22 dBm were measured. In addition, by adopting three-harmonic termination strategy, excellent second-and third-harmonic suppression levels of 50 and 46 dBc, respectively, were obtained. The complete design cycle from analysis through fabrication to characterization is explained. © 2010 IEEE.
Resumo:
Wind power generation differs from conventional thermal generation due to the stochastic nature of wind. Thus wind power forecasting plays a key role in dealing with the challenges of balancing supply and demand in any electricity system, given the uncertainty associated with the wind farm power output. Accurate wind power forecasting reduces the need for additional balancing energy and reserve power to integrate wind power. Wind power forecasting tools enable better dispatch, scheduling and unit commitment of thermal generators, hydro plant and energy storage plant and more competitive market trading as wind power ramps up and down on the grid. This paper presents an in-depth review of the current methods and advances in wind power forecasting and prediction. Firstly, numerical wind prediction methods from global to local scales, ensemble forecasting, upscaling and downscaling processes are discussed. Next the statistical and machine learning approach methods are detailed. Then the techniques used for benchmarking and uncertainty analysis of forecasts are overviewed, and the performance of various approaches over different forecast time horizons is examined. Finally, current research activities, challenges and potential future developments are appraised. (C) 2011 Elsevier Ltd. All rights reserved.
Resumo:
Dwindling fossil fuel resources and pressures to reduce greenhouse gas (GHG) emissions will result in a more diverse range of generation portfolios for future electricity systems. Irrespective of the portfolio mix the overarching requirement for all electricity suppliers and system operators is that supply instantaneously meets demand and that robust operating standards are maintained to ensure a consistent supply of high quality electricity to end-users. Therefore all electricity market participants will ultimately need to use a variety of tools to balance the power system. Thus the role of demand side management (DSM) with energy storage will be paramount to integrate future diverse generation portfolios. Electric water heating (EWH) has been studied previously, particularly at the domestic level to provide load control, peak shave and to benefit end-users financially with lower bills, particularly in vertically integrated monopolies. In this paper, a continuous Direct Load Control (DLC) EWH algorithm is applied in a liberalized market environment using actual historical electricity system and market data to examine the potential energy savings, cost reductions and electricity system operational improvements.
Resumo:
This paper presents holistic design of a novel four-way differential power-combining transformer for use in millimeter-wave power-amplifier (PA). The combiner with an inner radius of 25 µm exhibits a record low insertion loss of 1.25 dB at 83.5 GHz. It is designed to simultaneously act as a balanced-to-unbalanced converter, removing the need for additional BALUNs typically required in differential circuits. A complete circuit comprised of a power splitter, two-stage differential cascode PA array, a power combiner as well as input and output matching elements was designed and realized in SiGe technology with f/f 170/250 GHz. Measured small-signal gain of at least 16.8 dB was obtained from 76.4 to 85.3 GHz with a peak 19.5 dB at 83 GHz. The prototype delivered 12.5 dBm output referred 1 dB compression point and 14 dBm saturated output power when operated from a 3.2 V dc supply voltage at 78 GHz.
Resumo:
Experimental assessments of the modified power-combining Class-E amplifier are described. The technique used to combine the output of individual power amplifiers (PAs) into an unbalanced load without the need for bulky transformers permits the use of small RF chokes useful for the deployment in the EER transmitter. The modified output load network of the PA results in excellent 50 dBc and 46 dBc second and third-harmonic suppressions, dispensing the need for additional lossy filtering block. Operating from a 3.2 V dc supply voltage, the PA exhibits 64% drain efficiency at 24 dBm output power. Over a wide bandwidth of 350 MHz, drain efficiency of better than 60% at output power higher than 22 dBm were achieved. © 2010 IEICE Institute of Electronics Informati.