964 resultados para Translocation (Génétique)
Resumo:
Tissue culture, SDS-polyacrylamide gel electrophoresis (SDS-PAGE) and spectra analysis were used for studying the aggregation mechanism of protoplasts from Bryopsis hypnoides Lamouroux and the discrepancy between the protoplast-regenerated plants and the wild type. The aggregation of protoplasts from B. hypnoides was observed in natural seawater and artificial seawater with different pH values, and the location and mechanism of the materials causing the aggregation were also studied. Results showed that the protoplasts could aggregate into some viable spheres in natural seawater and subsequently grow into mature individuals. Aggregation of the protoplasts depended exclusively upon the pH value (6-11), and the protoplasts aggregated best at pH 8-9. Some of the extruded protoplasts were separated into two parts by centrifugation: the pellet (PO) and the supernatant (PL). The PO could aggregate in artificial seawater (pH 8.3) but not in PL. No aggregation was found in PO cultured in natural seawater containing nigericin, which can dissipate the proton gradients across the membrane. These experiments suggest that the aggregation of protoplasts is proton-gradient dependent and the materials causing the aggregation were not in the vacuolar sap, but located on the surface or inside the organelles. Furthermore, the transfer of the materials across the membrane was similar to Delta pH-based translocation (Delta pH/TAT) pathway that occurs in the chloroplasts of higher plants and bacteria. Obvious discrepancies in both the total soluble proteins and the ratio of chlorophyll a to chlorophyll b between the regenerated B. hypnoides and the wild type were found, which may be related to the exchange of genetic material during aggregation of the organelles. In the process of development, diatom Amphora coffeaeformis Agardh attached to the protoplast aggregations, retarding their further development, and once they were removed, the aggregations immediately germinated, which showed that diatoms can affect the development of other algae.
Resumo:
The complete mitochondrial (mt) DNA sequence was determined for a ridgetail white prawn, Exopalaemon carinicauda Holthuis, 1950 (Crustacea: Decopoda: Palaemonidae). The mt genome is 15,730 bp in length, encoding a standard set of 13 protein-coding genes, 2 ribosomal RNA genes, and 22 transfer RNA genes, which is typical for metazoans. The majority-strand consists of 33.6% A, 23.0% C, 13.4% G, and 30.0% T bases (AT skew = 0.057: GC skew = -0.264). A total of 1045 bp of non-coding nucleotides were observed in 16 intergenic regions,,including a major A+ T rich (79.7%) noncoding region (886 bp). A novel translocation of tRNA(Pro) and tRNA(Thr) was found when comparing this genome with the pancrustacean ground pattern indicating that gene order is not conserved among caridean mitochondria. Furthermore, the rate of Ka/Ks in 13 protein-coding genes between three caridean species is Much less than 1, which indicates a strong Purifying selection within this group. To investigate the phylogenetic relationship within Malacostraca, phylogenetic trees based oil Currently available malacostracan complete mitochondrial sequences were built with the maximum likelihood and Bayesian models. All analyses based oil nucleotide and amino acid data strongly support the monophyly of Decapoda. The Penaeidae, Reptantia, Caridea, and Meiura clades were also recovered as monophyletic groups with Strong Statistical Support. However, the phylogenetic relationships within Pleocyemata are unstable, as represented by the inclusion or exclusion of Caridea. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
Alien chromosomes of twelve giant spike wheat germplasm lines were identified by C-banding, genomic in situ hybridization (GISH), sequence characterized amplified region (SCAR), and random amplified polymorphic DNA (RAPD). All lines showed a chromosome number of 2n = 42, five of them carried both a pair of wheat-rye (Triticum aestivum-Secale cereal) 1BL/1RS translocation chromosomes and a pair of Agropyron intermedium (Ai) chromosomes, three carried a pair of Ai chromosomes only, three others carried a pair of 1BL/1RS chromosomes only, and one carried neither 1BL/1BS nor Ai chromosome. Further identification revealed that the identical Ai chromosome in these germplasm lines substituted the chromosome 2D of common wheat (Triticum aestivum L.), designated as 2Ai. The genetic implication and further utilization of 2Ai in wheat improvement were also discussed.
Resumo:
Milula, a monotypic genus endemic to the Qinghai-Tibetan Plateau, was found to be nested deeply within Allium by the molecular phylogeny despite the aberrant morphology. It remains unknown what had contributed to the rapid evolution of morphology and origin of this exceptional species. In contrast to a previous report of its karyotypes with 2n = 16 = 8M+8SM (2SAT), similar to most species of Allium, a rather different karyotype, 2n = 20 = 4M +10SM+6T (2SAT), was found in examined 31 individuals from 6 populations of M. spicata distributed in the central Tibet. Karyotypes of 7 Allium species occurring in the Qinghai-Tibetan Plateau were further reported. The basic number x = 8 was confirmed for all of them and their karyotypes consist mainly of metacentric and submetacentric chromosomes with rare subterminal and terminal chromosomes. The karyotype of M. spicata is distinctly different from that of most Allium species occurring in the plateau through a complete comparison of all available species in this region and adjacent areas. However, the same chromosome number and similar karyotypic structure were found in A. fasciculatum of Sect. Bromatorrhiza, indicating a possible close relationship between them. But this similarity is contradictory to the preliminary molecular phylogenetic analysis that Milula was closely related to A. cyathophorum of Sect. Bromatorrhiza with x=8, but the other species with x=10 and 11 in this section were clearly placed in the other clade. We therefore suggested that the paralleling evolution from x=8 to x=9, 10 and 11 with increasing asymmetry of karyotype possibly due to the chromosomal Robertsonian translocation might occur separately in the two recognized phylogenetic lineages of Allium. In addition to aneuploidy and following change of the chromosomal structures, the habitat isolation due to the recent uplift of the Qinghai-Tibetan Plateau and the Quaternary climatic oscillation, plays a greater role in origin of Milula and other endemic species (genera) with aberrant morphology from their progenitors.
Resumo:
With development of industry and acceleration of urbanization, problems of air quality as well as their influences on human health have recently been regarded highly by current international communities and governments. Generally, industrializations can result in exhausting of a lot of industry gases and dusts, while urbanization can cause increasing of modern vehicles. Comparing with traditional chemical methods, magnetic method is simple, rapid, exact, low-cost and non-destructive for monitoring air pollution and has been widely applied in domestic and international studies. In this thesis, with an aim of better monitoring air pollution, we selected plants (highroad-side perennial pine trees (Pinus pumila Regel) along a highroad linking Beijing City and the Capital International Airport, and tree bark and tree ring core samples (willow, Salix matsudana) nearby a smelting industry in northeast Beijing) for magnetic studies. With systemic magnetic measurements on these samples, magnetic response mechanism of contamination(e.g. tree leaves, tree ring)to both short- and long-term environmental pollution has been constructed, and accordingly the pollution range, degree and process of different time-scale human activities could be assessed. A series of rock magnetic experiments of tree leaves show that the primary magnetic mineral of leaf samples was identified to be magnetite, in pseudo-single domain (PSD) grain size range of 0.2-5.0 μm. Magnetite concentration and grain size in leaves are ascertained to decrease with increasing of sampling distance to highroad asphalt surface, suggesting that high magnetic response to traffic pollution is localized within a distance of about 2 m away from highroad asphalt surface. On the other hand, highroad-side trees and rainwater can effectively reduce the concentration of traffic pollution-induced particulate matters (PMs) in the atmosphere. This study is the first time to investigate the relationship of smelting factory activities and vicissitudes of environment with tree rings by magnetic methods. Results indicate that magnetic particles are omnipresent in tree bark and trunk wood. Magnetic techniques including low-temperature experiment, successive acquisition of IRM, hysteresis loops and SIRM measurements suggest that magnetic particles are predominated by magnetite in pseudo-single domain state. Comparison of magnetic properties of tree trunk and branch cores collected from different directions and heights implies that collection of magnetic particles depends on both sampling direction and height. Pollution source-facing tree trunk wood contains significantly more magnetic particles than other sides. These indicate that magnetic particles are most likely intercepted and collected by tree bark first, then enter into tree xylem tissues by translocation during growing season, and are finally enclosed in a tree ring by lignifying. Correlation between magnetic properties such as time-dependent SIRM values of tree ring cores and the annual steel yields of the smelting factory is significant. Considering the dependence of magnetic properties in sampling directions, heights, and ring cores, we proposed that magnetic particles in the xylem cannot move between tree rings. Accordingly, the SIRM and some other magnetic parameters of tree ring cores from the source-facing side could be contributed to historical study of atmospheric pollution produced by heavy metal smelting activities, isoline diagrams of SIRM values of all the tree rings indicate that air pollution is increasing worse. We believed that a synthetic rock magnetic study is an effective method for determining concentration and grain size of ferromagnets in the atmospheric PMs, and then it should be a rapid and feasible technique for monitoring atmospheric pollution.
Resumo:
Projeto de Pós-Graduação/Dissertação apresentado à Universidade Fernando Pessoa como parte dos requisitos para obtenção do grau de Mestre em Ciências Farmacêuticas
Resumo:
Projeto de Pós-Graduação/Dissertação apresentado à Universidade Fernando Pessoa como parte dos requisitos para obtenção do grau de Mestre em Ciências Farmacêuticas
Resumo:
Our group has demonstrated that inflammatory diseases such as type 2 diabetes (DM), inflammatory bowel disease (IBD), and periodontal disease (PD) are associated with altered B cell function that may contribute to disease pathogenesis. B cells were found to be highly activated with characteristics of inflammatory cells. Obesity is a pre-disease state for cardiovascular disease and type 2 diabetes and is considered a state of chronic inflammation. Therefore, we sought to better characterize B cell function and phenotype in obese patients. We demonstrate that (Toll-like receptor) TLR4 and CD36 expression by B cells is elevated in obese subjects, suggesting increased sensing of lipopolysaccharide (LPS) and other TLR ligands. These ligands may be of microbial, from translocation from a leaky gut, or host origin. To better assess microbial ligand burden and host response in the bloodstream, we measured LPS binding protein (LBP), bacterial/permeability increasing protein (BPI), and high mobility group box 1 (HMGB1). Thus far, our data demonstrate an increase in LBP in DM and obesity indicating increased responses to TLR ligands in the blood. Interestingly, B cells responded to certain types of LPS by phosphorylating extracellular-signal-regulated kinases (ERK) 1/2. A better understanding of the immunological state of obesity and the microbial and endogenous TLR ligands that may be activating B cells will help identify novel therapeutics to reduce the risk of more dangerous conditions, such as cardiovascular disease.
Resumo:
We studied the cells from three selected patients with Ph-chromosome-negative chronic myeloid leukemia (CML) by Southern blotting, polymerase chain reaction, and in situ hybridization of informative probes to metaphase chromosomes. All three patients had rearrangement of M-BCR sequences in the BCR gene and expression of one or other of the mRNA species characteristic of Ph-positive CML. Leukemic metaphases studied after trypsin-Giemsa banding were indistinguishable from normal. The ABL probe localized both to chromosome 9 and 22 in each case. A probe containing 3' M-BCR sequences localized only to chromosome 22, and not to chromosome 9 as would be expected in Ph-positive CML. Two new probes that recognize different polymorphic regions distal to the ABL gene on chromosome 9 in normal subjects localized exclusively to chromosome 9 in two patients and to both chromosomes 9 and 22 in one patient. These results show that Ph-negative CML with BCR rearrangement is associated with insertion of a variable quantity of chromosome 9 derived material into chromosome 22q11; there is no evidence for reciprocal translocation of material from chromosome 22 to chromosome 9.
Resumo:
It has been shown previously that female mice homozygous for an alpha-fetoprotein (AFP) null allele are sterile as a result of anovulation, probably due to a defect in the hypothalamic-pituitary axis. Here we show that these female mice exhibit specific anomalies in the expression of numerous genes in the pituitary, including genes involved in the gonadotropin-releasing hormone pathway, which are underexpressed. In the hypothalamus, the gonadotropin-releasing hormone gene, Gnrh1, was also found to be down-regulated. However, pituitary gene expression could be normalized and fertility could be rescued by blocking prenatal estrogen synthesis using an aromatase inhibitor. These results show that AFP protects the developing female brain from the adverse effects of prenatal estrogen exposure and clarify a long-running debate on the role of this fetal protein in brain sexual differentiation.
Resumo:
The nuclear respiratory factor-1 (NRF1) gene is activated by lipopolysaccharide (LPS), which might reflect TLR4-mediated mitigation of cellular inflammatory damage via initiation of mitochondrial biogenesis. To test this hypothesis, we examined NRF1 promoter regulation by NFκB, and identified interspecies-conserved κB-responsive promoter and intronic elements in the NRF1 locus. In mice, activation of Nrf1 and its downstream target, Tfam, by Escherichia coli was contingent on NFκB, and in LPS-treated hepatocytes, NFκB served as an NRF1 enhancer element in conjunction with NFκB promoter binding. Unexpectedly, optimal NRF1 promoter activity after LPS also required binding by the energy-state-dependent transcription factor CREB. EMSA and ChIP assays confirmed p65 and CREB binding to the NRF1 promoter and p65 binding to intron 1. Functionality for both transcription factors was validated by gene-knockdown studies. LPS regulation of NRF1 led to mtDNA-encoded gene expression and expansion of mtDNA copy number. In cells expressing plasmid constructs containing the NRF-1 promoter and GFP, LPS-dependent reporter activity was abolished by cis-acting κB-element mutations, and nuclear accumulation of NFκB and CREB demonstrated dependence on mitochondrial H(2)O(2). These findings indicate that TLR4-dependent NFκB and CREB activation co-regulate the NRF1 promoter with NFκB intronic enhancement and redox-regulated nuclear translocation, leading to downstream target-gene expression, and identify NRF-1 as an early-phase component of the host antibacterial defenses.
Resumo:
BACKGROUND: Scythe/BAT3 is a member of the BAG protein family whose role in apoptosis has been extensively studied. However, since the developmental defects observed in Bat3-null mouse embryos cannot be explained solely by defects in apoptosis, we investigated whether BAT3 is also involved in cell-cycle progression. METHODS/PRINCIPAL FINDINGS: Using a stable-inducible Bat3-knockdown cellular system, we demonstrated that reduced BAT3 protein level causes a delay in both G1/S transition and G2/M progression. Concurrent with these changes in cell-cycle progression, we observed a reduction in the turnover and phosphorylation of the CDK inhibitor p21, which is best known as an inhibitor of DNA replication; however, phosphorylated p21 has also been shown to promote G2/M progression. Our findings indicate that in Bat3-knockdown cells, p21 continues to be synthesized during cell-cycle phases that do not normally require p21, resulting in p21 protein accumulation and a subsequent delay in cell-cycle progression. Finally, we showed that BAT3 co-localizes with p21 during the cell cycle and is required for the translocation of p21 from the cytoplasm to the nucleus during the G1/S transition and G2/M progression. CONCLUSION: Our study reveals a novel, non-apoptotic role for BAT3 in cell-cycle regulation. By maintaining a low p21 protein level during the G1/S transition, BAT3 counteracts the inhibitory effect of p21 on DNA replication and thus enables the cells to progress from G1 to S phase. Conversely, during G2/M progression, BAT3 facilitates p21 phosphorylation by cyclin A/Cdk2, an event required for G2/M progression. BAT3 modulates these pro- and anti-proliferative roles of p21 at least in part by regulating cyclin A abundance, as well as p21 translocation between the cytoplasm and the nucleus to ensure that it functions in the appropriate intracellular compartment during each phase of the cell cycle.
Resumo:
The G protein-coupled receptor (GPCR) kinases (GRKs) phosphorylate and desensitize agonist-occupied GPCRs. GRK2-mediated receptor phosphorylation is preceded by the agonist-dependent membrane association of this enzyme. Previous in vitro studies with purified proteins have suggested that this translocation may be mediated by the recruitment of GRK2 to the plasma membrane by its interaction with the free betagamma subunits of heterotrimeric G proteins (G betagamma). Here we demonstrate that this mechanism operates in intact cells and that specificity is imparted by the selective interaction of discrete pools of G betagamma with receptors and GRKs. Treatment of Cos-7 cells transiently overexpressing GRK2 with a beta-receptor agonist promotes a 3-fold increase in plasma membrane-associated GRK2. This translocation of GRK2 is inhibited by the carboxyl terminus of GRK2, a known G betagamma sequestrant. Furthermore, in cells overexpressing both GRK2 and G beta1 gamma2, activation of lysophosphatidic acid receptors leads to the rapid and transient formation of a GRK/G betagamma complex. That G betagamma specificity exists at the level of the GPCR and the GRK is indicated by the observation that a GRK2/G betagamma complex is formed after agonist occupancy of the lysophosphatidic acid and beta-adrenergic but not thrombin receptors. In contrast to GRK2, GRK3 forms a G betagamma complex after stimulation of all three GPCRs. This G betagamma binding specificity of the GRKs is also reflected at the level of the purified proteins. Thus the GRK2 carboxyl terminus binds G beta1 and G beta2 but not G beta3, while the GRK3 fusion protein binds all three G beta isoforms. This study provides a direct demonstration of a role for G betagamma in mediating the agonist-stimulated translocation of GRK2 and GRK3 in an intact cellular system and demonstrates isoform specificity in the interaction of these components.
Resumo:
Prolonged exposure of cells or tissues to drugs or hormones such as catecholamines leads to a state of refractoriness to further stimulation by that agent, known as homologous desensitization. In the case of the beta-adrenergic receptor coupled to adenylate cyclase, this process has been shown to be intimately associated with the sequestration of the receptors from the cell surface through a cAMP-independent process. Recently, we have shown that homologous desensitization in the frog erythrocyte model system is also associated with increased phosphorylation of the beta-adrenergic receptor. We now provide evidence that the phosphorylation state of the beta-adrenergic receptor regulates its functional coupling to adenylate cyclase, subcellular translocation, and recycling to the cell surface during the process of agonist-induced homologous desensitization. Moreover, we show that the receptor phosphorylation is reversed by a phosphatase specifically associated with the sequestered subcellular compartment. At 23 degrees C, the time courses of beta-adrenergic receptor phosphorylation, sequestration, and adenylate cyclase desensitization are identical, occurring without a lag, exhibiting a t1/2 of 30 min, and reaching a maximum at approximately 3 hr. Upon cell lysis, the sequestered beta-adrenergic receptors can be partially recovered in a light membrane vesicle fraction that is separable from the plasma membranes by differential centrifugation. The increased beta-adrenergic receptor phosphorylation is apparently reversed in the sequestered vesicle fraction as the sequestered receptors exhibit a phosphate/receptor stoichiometry that is similar to that observed under basal conditions. High levels of a beta-adrenergic receptor phosphatase activity appear to be associated with the sequestered vesicle membranes. The functional activity of the phosphorylated beta-adrenergic receptor was examined by reconstituting purified receptor with its biochemical effector the guanine nucleotide regulatory protein (Ns) in phospholipid vesicles and assessing the receptor-stimulated GTPase activity of Ns. Compared to controls, phosphorylated beta-adrenergic receptors, purified from desensitized cells, were less efficacious in activating the Ns GTPase activity. These results suggest that phosphorylation of the beta-adrenergic receptor leads to its functional uncoupling and physical translocation away from the cell surface into a sequestered membrane domain. In the sequestered compartment, the phosphorylation is reversed thus enabling the receptor to recycle back to the cell surface and recouple with adenylate cyclase.
Resumo:
PURPOSE: The endoplasmic reticulum-associated degradation pathway is responsible for the translocation of misfolded proteins across the endoplasmic reticulum membrane into the cytosol for subsequent degradation by the proteasome. To define the phenotype associated with a novel inherited disorder of cytosolic endoplasmic reticulum-associated degradation pathway dysfunction, we studied a series of eight patients with deficiency of N-glycanase 1. METHODS: Whole-genome, whole-exome, or standard Sanger sequencing techniques were employed. Retrospective chart reviews were performed in order to obtain clinical data. RESULTS: All patients had global developmental delay, a movement disorder, and hypotonia. Other common findings included hypolacrima or alacrima (7/8), elevated liver transaminases (6/7), microcephaly (6/8), diminished reflexes (6/8), hepatocyte cytoplasmic storage material or vacuolization (5/6), and seizures (4/8). The nonsense mutation c.1201A>T (p.R401X) was the most common deleterious allele. CONCLUSION: NGLY1 deficiency is a novel autosomal recessive disorder of the endoplasmic reticulum-associated degradation pathway associated with neurological dysfunction, abnormal tear production, and liver disease. The majority of patients detected to date carry a specific nonsense mutation that appears to be associated with severe disease. The phenotypic spectrum is likely to enlarge as cases with a broader range of mutations are detected.