968 resultados para Practising Engineers
Resumo:
This letter addresses the optimization and complexity reduction of switch-reconfigured antennas. A new optimization technique based on graph models is investigated. This technique is used to minimize the redundancy in a reconfigurable antenna structure and reduce its complexity. A graph modeling rule for switch-reconfigured antennas is proposed, and examples are presented.
Resumo:
The most popular algorithms for blind equalization are the constant-modulus algorithm (CMA) and the Shalvi-Weinstein algorithm (SWA). It is well-known that SWA presents a higher convergence rate than CMA. at the expense of higher computational complexity. If the forgetting factor is not sufficiently close to one, if the initialization is distant from the optimal solution, or if the signal-to-noise ratio is low, SWA can converge to undesirable local minima or even diverge. In this paper, we show that divergence can be caused by an inconsistency in the nonlinear estimate of the transmitted signal. or (when the algorithm is implemented in finite precision) by the loss of positiveness of the estimate of the autocorrelation matrix, or by a combination of both. In order to avoid the first cause of divergence, we propose a dual-mode SWA. In the first mode of operation. the new algorithm works as SWA; in the second mode, it rejects inconsistent estimates of the transmitted signal. Assuming the persistence of excitation condition, we present a deterministic stability analysis of the new algorithm. To avoid the second cause of divergence, we propose a dual-mode lattice SWA, which is stable even in finite-precision arithmetic, and has a computational complexity that increases linearly with the number of adjustable equalizer coefficients. The good performance of the proposed algorithms is confirmed through numerical simulations.
Resumo:
This work considers the open-loop control problem of steering a two-level quantum system from any initial to any final condition. The model of this system evolves on the state space X = SU(2), having two inputs that correspond to the complex amplitude of a resonant laser field. A symmetry preserving flat output is constructed using a fully geometric construction and quaternion computations. Simulation results of this flatness-based open-loop control are provided.
Resumo:
Due to the broadband characteristic of chaotic signals, many of the methods that have been proposed for synchronizing chaotic systems do not usually present a satisfactory performance when applied to bandlimited communication channels. Here, the effects of bandwidth limitations imposed by the channel on the synchronous solution of a discrete-time chaotic master-slave network are investigated. The discrete-time system considered in this study is the Henon map. It is analytically shown that synchronism can be achieved in such a network by introducing a digital filter in the feedback loop responsible for generating the chaotic signal that will be sent to the slave node. Numerical simulations relating the filter parameters, such as its order and cut-off frequency, to the maximum Lyapunov exponent of the master node, which determines if the transmitted signal is chaotic or not, are also presented. These results can be useful for practical communication schemes based on chaos.
Resumo:
Highly redundant or statically undetermined structures, such as a cable-stayed bridge, have been of particular concern to the engineering community nowadays because of the complex parameters that must be taken into account for healthy monitoring. The purpose of this study was to verify the reliability and practicability of using GPS to characterize dynamic oscillations of small span bridges. The test was carried out on a cable-stayed wood footbridge at Escola de Engenharia de Sao Carlos-Universidade de Sao Paulo, Brazil. Initially a static load trial was carried out to get an idea of the deck amplitude and oscillation frequency. After that, a calibration trial was carried out by applying a well known oscillation on the rover antenna to check the environment detectable limits for the method used. Finally, a dynamic load trial was carried out by using GPS and a displacement transducer to measure the deck oscillation. The displacement transducer was used just to confirm the results obtained by the GPS. The results have shown that the frequencies and amplitude displacements obtained by the GPS are in good agreement with the displacement transducer responses. GPS can be used as a reliable tool to characterize the dynamic behavior of large structures such as cable-stayed footbridges undergoing dynamic loads.
Resumo:
This letter presents the properties of nMOS junctionless nanowire transistors (JNTs) under cryogenic operation. Experimental results of drain current, subthreshold slope, maximum transconductance at low electric field, and threshold voltage, as well as its variation with temperature, are presented. Unlike in classical devices, the drain current of JNTs decreases when temperature is lowered, although the maximum transconductance increases when the temperature is lowered down to 125 K. An analytical model for the threshold voltage is proposed to explain the influence of nanowire width and doping concentration on its variation with temperature. It is shown that the wider the nanowire or the lower the doping concentration, the higher the threshold voltage variation with temperature.
Resumo:
This paper presents a comparative study of computational fluid dynamics (CFD) and analytical and semiempirical (ASE) methods applied to the prediction of the normal force and moment coefficients of an autonomous underwater vehicle (AUV). Both methods are applied to the. bare hull of the vehicle and to the body-hydroplane combination. The results are validated through experiments in a towing tank. It is shown that the CFD approach allows for a good prediction of the coefficients over the range of angles of attack considered. In contrast with the traditional ASE formulations used in naval and aircraft fields, an improved methodology is introduced that takes advantage of the qualitative information obtained from CFD flow visualizations.
Resumo:
Honeycomb structures have been used in different engineering fields. In civil engineering, honeycomb fiber-reinforced polymer (FRP) structures have been used as bridge decks to rehabilitate highway bridges in the United States. In this work, a simplified finite-element modeling technique for honeycomb FRP bridge decks is presented. The motivation is the combination of the complex geometry of honeycomb FRP decks and computational limits, which may prevent modeling of these decks in detail. The results from static and modal analyses indicate that the proposed modeling technique provides a viable tool for modeling the complex geometry of honeycomb FRP bridge decks. The modeling of other bridge components (e.g., steel girders, steel guardrails, deck-to-girder connections, and pier supports) is also presented in this work.
Resumo:
SKAN: Skin Scanner - System for Skin Cancer Detection Using Adaptive Techniques - combines computer engineering concepts with areas like dermatology and oncology. Its objective is to discern images of skin cancer, specifically melanoma, from others that show only common spots or other types of skin diseases, using image recognition. This work makes use of the ABCDE visual rule, which is often used by dermatologists for melanoma identification, to define which characteristics are analyzed by the software. It then applies various algorithms and techniques, including an ellipse-fitting algorithm, to extract and measure these characteristics and decide whether the spot is a melanoma or not. The achieved results are presented with special focus on the adaptive decision-making and its effect on the diagnosis. Finally, other applications of the software and its algorithms are presented.
Resumo:
In this paper it is presented the theoretical background, the architecture (using the ""4+1"" model), and the use of the library for execution of adaptive devices, AdapLib. This library was created seeking to be accurate to the adaptive devices theory, and to allow its easy extension considering the specific details of solutions that employ this kind of device. As an example, it is presented a case study in which the library was used to create a proof of concept to monitor and diagnose problems in an online news portal.
Resumo:
The water diffusion attributable to concentration gradients is among the main mechanisms of water transport into the asphalt mixture. The transport of small molecules through polymeric materials is a very complex process, and no single model provides a complete explanation because of the small molecule`s complex internal structure. The objective of this study was to experimentally determine the diffusion of water in different fine aggregate mixtures (FAM) using simple gravimetric sorption measurements. For the purposes of measuring the diffusivity of water, FAMs were regarded as a representative homogenous volume of the hot-mix asphalt (HMA). Fick`s second law is generally used to model diffusion driven by concentration gradients in different materials. The concept of the dual mode diffusion was investigated for FAM cylindrical samples. Although FAM samples have three components (asphalt binder, aggregates, and air voids), the dual mode was an attempt to represent the diffusion process by only two stages that occur simultaneously: (1) the water molecules are completely mobile, and (2) the water molecules are partially mobile. The combination of three asphalt binders and two aggregates selected from the Strategic Highway Research Program`s (SHRP) Materials Reference Library (MRL) were evaluated at room temperature [23.9 degrees C (75 degrees F)] and at 37.8 degrees C (100 degrees F). The results show that moisture uptake and diffusivity of water through FAM is dependent on the type of aggregate and asphalt binder. At room temperature, the rank order of diffusivity and moisture uptake for the three binders was the same regardless of the type of aggregate. However, this rank order changed at higher temperatures, suggesting that at elevated temperatures different binders may be undergoing a different level of change in the free volume. DOI: 10.1061/(ASCE)MT.1943-5533.0000190. (C) 2011 American Society of Civil Engineers.
Resumo:
Sound source localization (SSL) is an essential task in many applications involving speech capture and enhancement. As such, speaker localization with microphone arrays has received significant research attention. Nevertheless, existing SSL algorithms for small arrays still have two significant limitations: lack of range resolution, and accuracy degradation with increasing reverberation. The latter is natural and expected, given that strong reflections can have amplitudes similar to that of the direct signal, but different directions of arrival. Therefore, correctly modeling the room and compensating for the reflections should reduce the degradation due to reverberation. In this paper, we show a stronger result. If modeled correctly, early reflections can be used to provide more information about the source location than would have been available in an anechoic scenario. The modeling not only compensates for the reverberation, but also significantly increases resolution for range and elevation. Thus, we show that under certain conditions and limitations, reverberation can be used to improve SSL performance. Prior attempts to compensate for reverberation tried to model the room impulse response (RIR). However, RIRs change quickly with speaker position, and are nearly impossible to track accurately. Instead, we build a 3-D model of the room, which we use to predict early reflections, which are then incorporated into the SSL estimation. Simulation results with real and synthetic data show that even a simplistic room model is sufficient to produce significant improvements in range and elevation estimation, tasks which would be very difficult when relying only on direct path signal components.
Resumo:
Over the air download is an important feature for terrestrial digital television systems. It provides a cheaper option for DTV receiver manufacturers to provide bug fixes and quality improvements to their products, allowing a shorter time to the market. This paper presents a mechanism proposal of an over the air download software update for the Brazilian system. This mechanism was specified considering the Brazilian DTV over the air download specifications, but it was extended considering efficiency, reliability and user transparency as requirements for software update. A proof of concept was implemented on a Linux based set-top box. The mechanism is divided into five main functional parts: download schedule, packets download, packets authentication, installation and error robustness. Some analyses were conducted upon the implementation considering the following criteria: download robustness and maximum downloading rate. (1)
Resumo:
This paper presents the evaluation of the analog properties of nMOS junctionless (JL) multigate transistors, comparing their performance with those exhibited by inversion-mode (IM) trigate devices of similar dimensions. The study has been performed for devices operating in saturation as single-transistor amplifiers, and we have considered the dependence of the analog properties on fin width W(fin) and temperature T. Furthermore, this paper aims at providing a physical insight into the analog parameters of JL transistors. For that, in addition to device characterization, 3-D device simulations were performed. It is shown that, depending on gate voltage, JL devices can present both larger Early voltage V(EA) and larger intrinsic voltage gain A(V) than IM devices of similar dimensions. In addition, V(EA) and A(V) are always improved in JL devices when the temperature is increased, whereas they present a maximum value around room temperature for IM transistors.
Resumo:
This paper proposes and describes an architecture that allows the both engineer and programmer for defining and quantifying which peripheral of a microcontroller will be important to the particular project. For each application, it is necessary to use different types of peripherals. In this study, we have verified the possibility for emulating the behavior of peripheral in specifically CPUs. These CPUs hold a RAM memory, where code spaces specifically written for them could represent the behavior of some target peripheral, which are loaded and executed on it. We believed that the proposed architecture will provide larger flexibility in the use of the microcontrolles since this ""dedicated hardware components"" don`t execute to a special function, but it is a hardware capable to self adapt to the needs of each project. This research had as fundament a comparative study of four current microcontrollers. Preliminary tests using VHDL and FPGAs were done.