905 resultados para Parallel algorithm
Resumo:
The aim of this master’s thesis is to develop an algorithm to calculate the cable network for heat and power station CHGRES. This algorithm includes important aspect which has an influence on the cable network reliability. Moreover, according to developed algorithm, the optimal solution for modernization cable system from economical and technical point of view was obtained. The conditions of existing cable lines show that replacement is necessary. Otherwise, the fault situation would happen. In this case company would loss not only money but also its prestige. As a solution, XLPE single core cables are more profitable than other types of cable considered in this work. Moreover, it is presented the dependence of value of short circuit current on number of 10/110 kV transformers connected in parallel between main grid and considered 10 kV busbar and how it affects on final decision. Furthermore, the losses of company in power (capacity) market due to fault situation are presented. These losses are commensurable with investment to replace existing cable system.
Resumo:
The aim of this thesis is to describe hybrid drive design problems, the advantages and difficulties related to the drive. A review of possible hybrid constructions, benefits of parallel, series and series-parallel hybrids is done. In the thesis analytical and finite element calculations of permanent magnet synchronous machines with embedded magnets were done. The finite element calculations were done using Cedrat’s Flux 2D software. This machine is planned to be used as a motor-generator in a low power parallel hybrid vehicle. The boundary conditions for the design were found from Lucas-TVS Ltd., India. Design Requirements, briefly: • The system DC voltage level is 120 V, which implies Uphase = 49 V (RMS) in a three phase system. • The power output of 10 kW at base speed 1500 rpm (Torque of 65 Nm) is desired. • The maximum outer diameter should not be more than 250 mm, and the maximum core length should not exceed 40 mm. The main difficulties which the author met were the dimensional restrictions. After having designed and analyzed several possible constructions they were compared and the final design selected. Dimensioned and detailed design is performed. Effects of different parameters, such as the number of poles, number of turns and magnetic geometry are discussed. The best modification offers considerable reduction of volume.
Resumo:
Cellular automata are models for massively parallel computation. A cellular automaton consists of cells which are arranged in some kind of regular lattice and a local update rule which updates the state of each cell according to the states of the cell's neighbors on each step of the computation. This work focuses on reversible one-dimensional cellular automata in which the cells are arranged in a two-way in_nite line and the computation is reversible, that is, the previous states of the cells can be derived from the current ones. In this work it is shown that several properties of reversible one-dimensional cellular automata are algorithmically undecidable, that is, there exists no algorithm that would tell whether a given cellular automaton has the property or not. It is shown that the tiling problem of Wang tiles remains undecidable even in some very restricted special cases. It follows that it is undecidable whether some given states will always appear in computations by the given cellular automaton. It also follows that a weaker form of expansivity, which is a concept of dynamical systems, is an undecidable property for reversible one-dimensional cellular automata. It is shown that several properties of dynamical systems are undecidable for reversible one-dimensional cellular automata. It shown that sensitivity to initial conditions and topological mixing are undecidable properties. Furthermore, non-sensitive and mixing cellular automata are recursively inseparable. It follows that also chaotic behavior is an undecidable property for reversible one-dimensional cellular automata.
Resumo:
In the Russian Wholesale Market, electricity and capacity are traded separately. Capacity is a special good, the sale of which obliges suppliers to keep their generating equipment ready to produce the quantity of electricity indicated by the System Operator. The purpose of the formation of capacity trading was the maintenance of reliable and uninterrupted delivery of electricity in the wholesale market. The price of capacity reflects constant investments in construction, modernization and maintenance of power plants. So, the capacity sale creates favorable conditions to attract investments in the energy sector because it guarantees the investor that his investments will be returned.
Resumo:
In this work a fuzzy linear system is used to solve Leontief input-output model with fuzzy entries. For solving this model, we assume that the consumption matrix from di erent sectors of the economy and demand are known. These assumptions heavily depend on the information obtained from the industries. Hence uncertainties are involved in this information. The aim of this work is to model these uncertainties and to address them by fuzzy entries such as fuzzy numbers and LR-type fuzzy numbers (triangular and trapezoidal). Fuzzy linear system has been developed using fuzzy data and it is solved using Gauss-Seidel algorithm. Numerical examples show the e ciency of this algorithm. The famous example from Prof. Leontief, where he solved the production levels for U.S. economy in 1958, is also further analyzed.
Resumo:
I doktorsavhandlingen undersöks förmågan att lösa hos ett antal lösare för optimeringsproblem och ett antal svårigheter med att göra en rättvis lösarjämförelse avslöjas. Dessutom framläggs några förbättringar som utförts på en av lösarna som heter GAMS/AlphaECP. Optimering innebär, i det här sammanhanget, att finna den bästa möjliga lösningen på ett problem. Den undersökta klassen av problem kan karaktäriseras som svårlöst och förekommer inom ett flertal industriområden. Målet har varit att undersöka om det finns en lösare som är universellt snabbare och hittar lösningar med högre kvalitet än någon av de andra lösarna. Det kommersiella optimeringssystemet GAMS (General Algebraic Modeling System) och omfattande problembibliotek har använts för att jämföra lösare. Förbättringarna som presenterats har utförts på GAMS/AlphaECP lösaren som baserar sig på skärplansmetoden Extended Cutting Plane (ECP). ECP-metoden har utvecklats främst av professor Tapio Westerlund på Anläggnings- och systemteknik vid Åbo Akademi.
Resumo:
It is presented a software developed with Delphi programming language to compute the reservoir's annual regulated active storage, based on the sequent-peak algorithm. Mathematical models used for that purpose generally require extended hydrological series. Usually, the analysis of those series is performed with spreadsheets or graphical representations. Based on that, it was developed a software for calculation of reservoir active capacity. An example calculation is shown by 30-years (from 1977 to 2009) monthly mean flow historical data, from Corrente River, located at São Francisco River Basin, Brazil. As an additional tool, an interface was developed to manage water resources, helping to manipulate data and to point out information that it would be of interest to the user. Moreover, with that interface irrigation districts where water consumption is higher can be analyzed as a function of specific seasonal water demands situations. From a practical application, it is possible to conclude that the program provides the calculation originally proposed. It was designed to keep information organized and retrievable at any time, and to show simulation on seasonal water demands throughout the year, contributing with the elements of study concerning reservoir projects. This program, with its functionality, is an important tool for decision making in the water resources management.
Management zones using fuzzy clustering based on spatial-temporal variability of soil and corn yield
Resumo:
Clustering soil and crop data can be used as a basis for the definition of management zones because the data are grouped into clusters based on the similar interaction of these variables. Therefore, the objective of this study was to identify management zones using fuzzy c-means clustering analysis based on the spatial and temporal variability of soil attributes and corn yield. The study site (18 by 250-m in size) was located in Jaboticabal, São Paulo/Brazil. Corn yield was measured in one hundred 4.5 by 10-m cells along four parallel transects (25 observations per transect) over five growing seasons between 2001 and 2010. Soil chemical and physical attributes were measured. SAS procedure MIXED was used to identify which variable(s) most influenced the spatial variability of corn yield over the five study years. Basis saturation (BS) was the variable that better related to corn yield, thus, semivariograms models were fitted for BS and corn yield and then, data values were krigged. Management Zone Analyst software was used to carry out the fuzzy c-means clustering algorithm. The optimum number of management zones can change over time, as well as the degree of agreement between the BS and corn yield management zone maps. Thus, it is very important take into account the temporal variability of crop yield and soil attributes to delineate management zones accurately.
Resumo:
Kaasukaarihitsauksessa suojakaasuna käytetään yleensä argonin ja hiilidioksidin tai argonin ja heliumin seoksia. Suojakaasu vaikuttaa useisiin hitsausominaisuuksiin, jotka puolestaan vaikuttavat hitsauksen laatuun ja tuottavuuteen. Automaattisella suojakaasun tunnistuksella ja virtausmäärän mittauksella voitaisiin tehdä hitsauksesta paitsi käyttäjän kannalta yksinkertaisempaa, myös laadukkaampaa. Työn tavoite on löytää mahdollisimman edullinen ja kuitenkin mahdollisimman tarkasti kaasuseoksia tunnistava menetelmä, jota voitaisiin hyödyntää MIG/MAG-hitsauskoneeseen sisäänrakennettuna. Selvä etu on, jos menetelmällä voidaan mitata myös kaasun virtausmäärä. Äänennopeus kaasumaisessa väliaineessa on aineen atomi- ja molekyylirakenteesta ja lämpötilasta riippuva ominaisuus, joka voidaan mitata melko edullisesti. Äänennopeuden määritys perustuu ääniaallon kulkuajan mittaamiseen tunnetun pituisella matkalla. Kaasun virtausnopeus on laskettavissa myötä- ja vastavirtaan mitattujen kulkuaikojen erotuksen avulla. Rakennettu mittauslaitteisto koostuu kahdesta ultraäänimuuntimesta, joiden halkaisija on 10 mm ja jotka toimivat sekä lähettimenä että vastaanottimena. Muuntimet ovat 140 mm:n etäisyydellä toisistaan virtauskanavassa, jossa suojakaasu virtaa yhdensuuntaisesti äänen kanssa. Virtauskanava on putki, jossa on käytetty elastisia materiaaleja, jotta ääniaaltojen eteneminen kanavan runkoa pitkin minimoituisi. Kehitetty algoritmi etsii kahden lähetetyn 40 kHz:n taajuisen kanttiaaltopulssin aiheuttaman vasteen perusteella ääniaallon saapumisajanhetken. Useiden mittausten, tulosten lajittelun ja suodatuksen jälkeen tuntemattomalle kaasulle lasketaan lämpötilakompensoitu vertailuluku. Tuntematon kaasu tunnistetaan vertailemalla lukua tunnettujen kaasuseosten mitattuihin vertailulukuihin. Laitteisto tunnistaa seokset, joissa heliumin osuus argonissa on enintään 50 %. Hiilidioksidia sisältävät argonin seokset puolestaan tunnistetaan puhtaaseen hiilidioksidiin asti jopa kahden prosenttiyksikön tarkkuudella. Kaasun tilavuusvirtausmittauksen tarkkuus on noin 1,0 l/min.
Resumo:
This master’s thesis mainly focuses on the design requirements of an Electric drive for Hybrid car application and its control strategy to achieve a wide speed range. It also emphasises how the control and performance requirements are transformed into its design variables. A parallel hybrid topology is considered where an IC engine and an electric drive share a common crank shaft. A permanent magnet synchronous machine (PMSM) is used as an electric drive machine. Performance requirements are converted into Machine design variables using the vector model of PMSM. Main dimensions of the machine are arrived using analytical approach and Finite Element Analysis (FEA) is used to verify the design and performance. Vector control algorithm was used to control the machine. The control algorithm was tested in a low power PMSM using an embedded controller. A prototype of 10 kW PMSM was built according to the design values. The prototype was tested in the laboratory using a high power converter. Tests were carried out to verify different operating modes. The results were in agreement with the calculations.
Resumo:
Multiprocessing is a promising solution to meet the requirements of near future applications. To get full benefit from parallel processing, a manycore system needs efficient, on-chip communication architecture. Networkon- Chip (NoC) is a general purpose communication concept that offers highthroughput, reduced power consumption, and keeps complexity in check by a regular composition of basic building blocks. This thesis presents power efficient communication approaches for networked many-core systems. We address a range of issues being important for designing power-efficient manycore systems at two different levels: the network-level and the router-level. From the network-level point of view, exploiting state-of-the-art concepts such as Globally Asynchronous Locally Synchronous (GALS), Voltage/ Frequency Island (VFI), and 3D Networks-on-Chip approaches may be a solution to the excessive power consumption demanded by today’s and future many-core systems. To this end, a low-cost 3D NoC architecture, based on high-speed GALS-based vertical channels, is proposed to mitigate high peak temperatures, power densities, and area footprints of vertical interconnects in 3D ICs. To further exploit the beneficial feature of a negligible inter-layer distance of 3D ICs, we propose a novel hybridization scheme for inter-layer communication. In addition, an efficient adaptive routing algorithm is presented which enables congestion-aware and reliable communication for the hybridized NoC architecture. An integrated monitoring and management platform on top of this architecture is also developed in order to implement more scalable power optimization techniques. From the router-level perspective, four design styles for implementing power-efficient reconfigurable interfaces in VFI-based NoC systems are proposed. To enhance the utilization of virtual channel buffers and to manage their power consumption, a partial virtual channel sharing method for NoC routers is devised and implemented. Extensive experiments with synthetic and real benchmarks show significant power savings and mitigated hotspots with similar performance compared to latest NoC architectures. The thesis concludes that careful codesigned elements from different network levels enable considerable power savings for many-core systems.
Resumo:
Ikääntyvien ihmisten kasvava määrä tulevina vuosikymmeninä kuormittaa kaupunkien kotihoitoa enenemässä määrin. Kaupunkien rajalliset resurssit ovat jo nyt koetuksella, eikä nykyiseen tilanteeseen ole nähtävissä huomattavaa parannusta tulevina vuosina. Kotihoidon henkilöstön määrää ei pystytä kasvattamaan riittävästi suhteessa kasvavien asiakasvirtojen kanssa, jotta korkea palvelun laatu voitaisiin taata myös tulevaisuudessa. Lahden kaupungin kotihoito pyrkii etsimään teknisiä ratkaisuja kotihoidon haasteisiin muun muassa kotihoidon töiden jakamiseen kehitetyllä optimointialgoritmilla sekä simuloinnilla. Tämä diplomityö käsittelee toimintatutkimuksen avulla simuloinnin tuomia hyötyjä sekä rajoitteita Lahden kotihoidon näkökulmasta. Launeen alueen kotihoidon haasteita käydään läpi neljässä eri työpajassa. Työssä esitetään Quest-simulointiohjelmiston ominaisuuksia, sekä Launeen alueen simulointimallin luomista aina suunnittelusta verifiointiin. Työn tuottama lisäarvo kotihoidon kehittämisessä tulee ilmi neljässä eri vaihtoehtoajossa kotihoitajien asiakkaalta toiselle kulkemien matkojen ja matkoihin käytettyjen aikojen mittaamisessa.
Resumo:
The determination of the intersection curve between Bézier Surfaces may be seen as the composition of two separated problems: determining initial points and tracing the intersection curve from these points. The Bézier Surface is represented by a parametric function (polynomial with two variables) that maps a point in the tridimensional space from the bidimensional parametric space. In this article, it is proposed an algorithm to determine the initial points of the intersection curve of Bézier Surfaces, based on the solution of polynomial systems with the Projected Polyhedral Method, followed by a method for tracing the intersection curves (Marching Method with differential equations). In order to allow the use of the Projected Polyhedral Method, the equations of the system must be represented in terms of the Bernstein basis, and towards this goal it is proposed a robust and reliable algorithm to exactly transform a multivariable polynomial in terms of power basis to a polynomial written in terms of Bernstein basis .
Resumo:
This paper deals with the use of the conjugate gradient method of function estimation for the simultaneous identification of two unknown boundary heat fluxes in parallel plate channels. The fluid flow is assumed to be laminar and hydrodynamically developed. Temperature measurements taken inside the channel are used in the inverse analysis. The accuracy of the present solution approach is examined by using simulated measurements containing random errors, for strict cases involving functional forms with discontinuities and sharp-corners for the unknown functions. Three different types of inverse problems are addressed in the paper, involving the estimation of: (i) Spatially dependent heat fluxes; (ii) Time-dependent heat fluxes; and (iii) Time and spatially dependent heat fluxes.
Resumo:
In this paper we present a study of feasibility by using Cassino Parallel Manipulator (CaPaMan) as an earthquake simulator. We propose a suitable formulation to simulate the frequency, amplitude and acceleration magnitude of seismic motion by means of the movable platform motion by giving a suitable input motion. In this paper we have reported numerical simulations that simulate the three principal earthquake types for a seismic motion: one at the epicenter (having a vertical motion), another far from the epicenter (with the motion on a horizontal plane), and a combined general motion (with a vertical and horizontal motion).