837 resultados para Oral glucose tolerance test


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Aims: To gain insight on the immunological processes behind cow’s milk allergy (CMA) and the development of oral tolerance. To furthermore investigate the associations of HLA II and filaggrin genotypes with humoral responses to early oral antigens. Methods: The study population was from a cohort of 6209 healthy, full-term infants who in a double-blind randomized trial received supplementary feeding at maternity hospitals (mean duration 4 days): cow’s milk (CM) formula, extensively hydrolyzed whey formula or donor breast milk. Infants who developed CM associated symptoms that subsided during elimination diet (n=223) underwent an open oral CM challenge (at mean age 7 months). The challenge was negative in 112, and in 111 it confirmed CMA, which was IgE-mediated in 83. Patients with CMA were followed until recovery, and 94 of them participated in a follow-up study at age 8-9 years. We investigated serum samples at diagnosis (mean age 7 months, n=111), one year later (19 months, n=101) and at follow-up (8.6 years, n=85). At follow-up, also 76 children randomly selected from the original cohort and without CM associated symptoms were included. We measured CM specific IgE levels with UniCAP (Phadia, Uppsala, Sweden), and β-lactoglobulin, α-casein and ovalbumin specific IgA, IgG1, IgG4 and IgG levels with enzyme-linked immunosorbent assay in sera. We applied a microarray based immunoassay to measure the binding of IgE, IgG4 and IgA serum antibodies to sequential epitopes derived from five major CM proteins at the three time points in 11 patients with active IgE-mediated CMA at age 8-9 years and in 12 patients who had recovered from IgE-mediated CMA by age 3 years. We used bioinformatic methods to analyze the microarray data. We studied T cell expression profile in peripheral blood mononuclear cell (PBMC) samples from 57 children aged 5-12 years (median 8.3): 16 with active CMA, 20 who had recovered from CMA by age 3 years, 21 non-atopic control subjects. Following in vitro β-lactoglobulin stimulation, we measured the mRNA expression in PBMCs of 12 T-cell markers (T-bet, GATA-3, IFN-γ, CTLA4, IL-10, IL-16, TGF-β, FOXP3, Nfat-C2, TIM3, TIM4, STIM-1) with quantitative real time polymerase chain reaction, and the protein expression of CD4, CD25, CD127, FoxP3 with flow cytometry. To optimally distinguish the three study groups, we performed artificial neural networks with exhaustive search for all marker combinations. For genetic associations with specific humoral responses, we analyzed 14 HLA class II haplotypes, the PTPN22 1858 SNP (R620W allele) and 5 known filaggrin null mutations from blood samples of 87 patients with CMA and 76 control subjects (age 8.0-9.3 years). Results: High IgG and IgG4 levels to β-lactoglobulin and α-casein were associated with the HLA (DR15)-DQB1*0602 haplotype in patients with CMA, but not in control subjects. Conversely, (DR1/10)-DQB1*0501 was associated with lower IgG and IgG4 levels to these CM antigens, and to ovalbumin, most significantly among control subjects. Infants with IgE-mediated CMA had lower β -lactoglobulin and α-casein specific IgG1, IgG4 and IgG levels (p<0.05) at diagnosis than infants with non-IgE-mediated CMA or control subjects. When CMA persisted beyond age 8 years, CM specific IgE levels were higher at all three time points investigated and IgE epitope binding pattern remained stable (p<0.001) compared with recovery from CMA by age 3 years. Patients with persisting CMA at 8-9 years had lower serum IgA levels to β-lactoglobulin at diagnosis (p=0.01), and lower IgG4 levels to β-lactoglobulin (p=0.04) and α-casein (p=0.05) at follow-up compared with patients who recovered by age 3 years. In early recovery, signal of IgG4 epitope binding increased while that of IgE decreased over time, and binding patterns of IgE and IgG4 overlapped. In T cell expression profile in response to β –lactoglobulin, the combination of markers FoxP3, Nfat-C2, IL-16, GATA-3 distinguished patients with persisting CMA most accurately from patients who had become tolerant and from non-atopic subjects. FoxP3 expression at both RNA and protein level was higher in children with CMA compared with non-atopic children. Conclusions: Genetic factors (the HLA II genotype) are associated with humoral responses to early food allergens. High CM specific IgE levels predict persistence of CMA. Development of tolerance is associated with higher specific IgA and IgG4 levels and lower specific IgE levels, with decreased CM epitope binding by IgE and concurrent increase in corresponding epitope binding by IgG4. Both Th2 and Treg pathways are activated upon CM antigen stimulation in patients with CMA. In the clinical management of CMA, HLA II or filaggrin genotyping are not applicable, whereas the measurement of CM specific antibodies may assist in estimating the prognosis.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Background Acute bacterial meningitis (BM) continues to be an important cause of childhood mortality and morbidity, especially in developing countries. Prognostic scales and the identification of risk factors for adverse outcome both aid in assessing disease severity. New antimicrobial agents or adjunctive treatments - except for oral glycerol - have essentially failed to improve BM prognosis. A retrospective observational analysis found paracetamol beneficial in adult bacteraemic patients, and some experts recommend slow β-lactam infusion. We examined these treatments in a prospective, double-blind, placebo-controlled clinical trial. Patients and methods A retrospective analysis included 555 children treated for BM in 2004 in the infectious disease ward of the Paediatric Hospital of Luanda, Angola. Our prospective study randomised 723 children into four groups, to receive a combination of cefotaxime infusion or boluses every 6 hours for the first 24 hours and oral paracetamol or placebo for 48 hours. The primary endpoints were 1) death or severe neurological sequelae (SeNeSe), and 2) deafness. Results In the retrospective study, the mortality of children with blood transfusion was 23% (30 of 128) vs. without blood transfusion 39% (109 of 282; p=0.004). In the prospective study, 272 (38%) of the children died. Of those 451 surviving, 68 (15%) showed SeNeSe, and 12% (45 of 374) were deaf. Whereas no difference between treatment groups was observable in primary endpoints, the early mortality in the infusion-paracetamol group was lower, with the difference (Fisher s exact test) from the other groups at 24, 48, and 72 hours being significant (p=0.041, 0.0005, and 0.005, respectively). Prognostic factors for adverse outcomes were impaired consciousness, dyspnoea, seizures, delayed presentation, and absence of electricity at home (Simple Luanda Scale, SLS); the Bayesian Luanda Scale (BLS) also included abnormally low or high blood glucose. Conclusions New studies concerning the possible beneficial effect of blood transfusion, and concerning longer treatment with cefotaxime infusion and oral paracetamol, and a study to validate our simple prognostic scales are warranted.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Autoimmune polyendocrinopathy-candidiasis-ectodermal dystrophy (APECED, APS1) is an autoimmune disease caused by a loss-of function mutation in the autoregulator gene (AIRE). Patients with APECED suffer from chronic mucocutaneous candidosis (CMC) of the oral cavity and oesophagus often since early childhood. The patients are mainly colonized with Candida albicans and decades of exposure to antifungal agents have lead to the development of clinical and microbiological resistance in the treatment of CMC in the APECED patient population in Finland. A high incidence of oral squamous cell carcinoma is associated with oral CMC lesions in the APECED patients over the age of 25. The overall aim of this study was firstly, to investigate the effect of long-term azole exposure on the metabolism of oral C. albicans isolates from APECED patients with CMC and secondly, to analyse the specific molecular mechanisms that are responsible for these changes. The aim of the first study was to examine C. albicans strains from APECED patients and the level of cross-resistance to miconazole, the recommended topical compound for the treatment of oral candidosis. A total of 16% of the strains had decreased susceptibility to miconazole and all of these isolates had decreased susceptibility to fluconazole. Miconazole MICs also correlated with MICs to voriconazole and posaconazole. A significant positive correlation between the years of miconazole exposure and the MICs to azole antifungal agents was also found. These included azoles the patients had not been exposed to. The aim of our second study was to determine if the APECED patients are continuously colonized with the same C. albicans strains despite extensive antifungal treatment and to gain a deeper insight into the genetic changes leading to azole resistance. The strains were typed using MLST and our results confirmed that all patients were persistently colonized with the same or a genetically related strain despite antifungal treatment between isolations. No epidemic strains were found. mRNA expression was analysed by Northern blotting, protein level by western blotting, and TAC1 and ERG11 genes were sequenced. The main molecular mechanisms resulting in azole resistance were gain-of-function mutations in TAC1 leading to over expression of CDR1 and CDR2, genes linked to azole resistance. Several strains had also developed point mutations in ERG11, another gene linked to azole resistance. In the third study we used gas chromatography to test whether the level of carcinogenic acetaldehyde produced by C. albicans strains isolated from APECED patients were different from the levels produced by strains isolated from healthy controls and oral carcinoma patients. Acetaldehyde is a carcinogenic product of alcohol fermentation and metabolism in microbes associated with cancers of the upper digestive tract. In yeast, acetaldehyde is a by-product of the pyruvate bypass that converts pyruvate into acetyl-CoA during fermentation. Our results showed that strains isolated from APECED patients produced mutagenic levels of acetaldehyde in the presence of glucose (100mM, 18g/l) and the levels produced were significantly higher than those from strains isolated from controls and oral carcinoma patients. All strains in the study, however, were found to produce mutagenic levels of acetaldehyde in the presence of ethanol (11mM). The glucose and ethanol levels used in this study are equivalent to those found in food and beverages and our results highlight the role of dietary sugars and ethanol on carcinogenesis. The aims of our fourth study were to research the effect of growth conditions in the levels of acetaldehyde produced by C. albicans and to gain deeper insight into the role of different genes in the pyruvate-bypass in the production of high acetaldehyde levels. Acetaldehyde production in the presence of glucose increased by 17-fold under moderately hypoxic conditions compared to the levels produced under normoxic conditions. Under moderately hypoxic conditions acetaldehyde levels did not correlate with the expression of ADH1 and ADH2, genes catalyzing the oxidation of ethanol to acetaldehyde, or PDC11, the gene catalyzing the oxidation of pyruvate to acetaldehyde but correlated with the expression of down-stream genes ALD6 and ACS1. Our results highlight a problem where indiscriminate use of azoles may influence azole susceptibility and lead to the development of cross-resistance. Despite clinically successful treatment leading to relief of symptoms, colonization by C. albicans strains is persistent within APECED patients. Microevolution and point mutations that occur in strains may lead to the development of azole-resistant isolates and metabolic changes leading to increased production of carcinogenic acetaldehyde.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Oral cancer is the seventh most common cancer worldwide and its incidence is increasing. The most important risk factors for oral cancer are chronic alcohol consumption and tobacco smoking, up to 80 % of oral carcinomas are estimated to be caused by alcohol and tobacco. They both trigger an increased level of salivary acetaldehyde, during and after consumption, which is believed to lead to carcinogenesis. Acetaldehyde has multiple mutagenic features and it has recently been classified as a Group 1 carcinogen for humans by the International Agency for Research on Cancer. Acetaldehyde is metabolized from ethanol by microbes of oral microbiota. Some oral microbes possess alcohol dehydrogenase enzyme (ADH) activity, which is the main enzyme in acetaldehyde production. Many microbes are also capable of acetaldehyde production via alcohol fermentation from glucose. However, metabolism of ethanol into acetaldehyde leads to production of high levels of this carcinogen. Acetaldehyde is found in saliva during and after alcohol consumption. In fact, rather low ethanol concentrations (2-20mM) derived from blood to saliva are enough for microbial acetaldehyde production. The high acetaldehyde levels in saliva after alcohol challenge are explained by the lack of oral microbiota and mucosa to detoxify acetaldehyde by metabolizing it into acetate and acetyl coenzymeA. The aim of this thesis project was to specify the role of oral microbes in the in vitro production of acetaldehyde in the presence of ethanol. In addition, it was sought to establish whether microbial metabolism could also produce acetaldehyde from glucose. Furthermore, the potential of xylitol to inhibit ethanol metabolism and acetaldehyde production was explored. Isolates of oral microbes were used in the first three studies. Acetaldehyde production was analyzed after ethanol, glucose and fructose incubation with gas chromatography measurement. In studies I and III, the ADH enzyme activity of some microbes was measured by fluorescence. The effect of xylitol was analyzed by incubating microbes with ethanol and xylitol. The fourth study was made ex vivo and microbial samples obtained from different patient groups were analyzed. This work has demonstrated that isolates of oral microbiota are able to produce acetaldehyde in the presence of clinically relevant ethanol and glucose concentrations. Significant differences were found between microbial species and isolates from different patient groups. In particular, the ability of candidal isolates from APECED patients to produce significantly more acetaldehyde in glucose incubation compared to healthy and cancer patient isolates is an interesting observation. Moreover, xylitol was found to reduce their acetaldehyde production significantly. Significant ADH enzyme activity was found in the analyzed high acetaldehyde producing streptococci and candida isolates. In addition, xylitol was found to reduce the ADH enzyme activity of C. albicans. Some results from the ex vivo study were controversial, since acetaldehyde production did not correlate as expected with the amount of microbes in the samples. Nevertheless, the samples isolated from patients did produce significant amounts of acetaldehyde with a clinically relevant ethanol concentration.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Mutations in the MCPH1 (microcephalin 1) gene, located at chromosome 8p23.1, result in two autosomal recessive disorders: primary microcephaly and premature chromosome condensation syndrome. MCPH1 has also been shown to be downregulated in breast, prostate and ovarian cancers, and mutated in 1/10 breast and 5/41 endometrial tumors, suggesting that it could also function as a tumor suppressor (TS) gene. To test the possibility of MCPH1 as a TS gene, we first performed LOH study in a panel of 81 matched normal oral tissues and oral squamous cell carcinoma (OSCC) samples, and observed that 14/71 (19.72%) informative samples showed LOH, a hallmark of TS genes. Three protein truncating mutations were identified in 1/15 OSCC samples and 2/5 cancer cell lines. MCPH1 was downregulated at both the transcript and protein levels in 21/41 (51.22%) and 19/25 (76%) OSCC samples respectively. A low level of MCPH1 promoter methylation was also observed in 4/40 (10%) tumor samples. We further observed that overexpression of MCPH1 decreased cellular proliferation, anchorage-independent growth in soft agar, cell invasion and tumor size in nude mice, indicating its tumor suppressive function. Using bioinformatic approaches and luciferase assay, we showed that the 3'-UTR of MCPH1 harbors two non-overlapping functional seed regions for miR-27a which negatively regulated its level. The expression level of miR-27a negatively correlated with the MCPH1 protein level in OSCC. Our study indicates for the first time that, in addition to its role in brain development, MCPH1 also functions as a tumor suppressor gene and is regulated by miR-27a.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Background: Candida-associated denture stomatitis is a frequent infectious disease. Treatment of this oral condition is difficult because failures and recurrences are common. The aim of this study was to test the in vitro antifungal activity of pure constituents of essentials oils. -- Methods: Eight terpenic derivatives (carvacrol, farnesol, geraniol, linalool, menthol, menthone, terpinen-4-ol, and aterpineol), a phenylpropanoid (eugenol), a phenethyl alcohol (tyrosol) and fluconazole were evaluated against 38 Candida isolated from denture-wearers and 10 collection Candida strains by the CLSI M27-A3 broth microdilution method. -- Results: Almost all the tested compounds showed antifungal activity with MIC ranges of 0.03-0.25% for eugenol and linalool, 0.03-0.12% for geraniol, 0.06-0.5% for menthol, a-terpineol and terpinen-4-ol, 0.03-0.5% for carvacrol, and 0.06-4% for menthone. These compounds, with the exception of farnesol, menthone and tyrosol, showed important in vitro activities against the fluconazole-resistant and susceptible-dose dependent Candida isolates. -- Conclusions: Carvacrol, eugenol, geraniol, linalool and terpinen-4-ol were very active in vitro against oral Candida isolates. Their fungistatic and fungicidal activities might convert them into promising alternatives for the topic treatment of oral candidiasis and denture stomatitis.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Diabetes mellitus e doenças periodontais são altamente prevalentes na população mundial. Doenças periodontais (DPs) compreendem um grupo de condições crônicas inflamatórias induzidas por microorganismos que levam à inflamação gengival, à destruição tecidual periodontal e à perda óssea alveolar. Diabetes mellitus (DM) é o termo utilizado para descrever um grupo de desordens metabólicas associadas à intolerância à glicose e ao metabolismo inadequado de carboidratos. Uma vez que DPs poderiam agir de forma similar a outros estados infecciosos sistêmicos, aumentando a severidade do diabetes, uma possível relação entre ambas tem sido considerada em todo o mundo. Polimorfismos genéticos de um único nucleotídeo (SNPs) têm sido estudados em diversas doenças. Nas periodontites, acredita-se que possam estar envolvidos na exacerbação da resposta inflamatória frente ao desafio bacteriano, modificando a susceptibilidade do hospedeiro. Neste estudo, a prevalência de periodontite foi avaliada em portadores de diabetes mellitus tipo I. Posteriormente, o SNP localizado na região promotora do gene TNFA (-1031T>C) foi analisado e sua importância para a doença periodontal destrutiva foi avaliada. O grupo teste foi constituído por diabéticos tipo I (DGT, n=113) enquanto o grupo controle por indivíduos não diabéticos (ND, n=73). Para as análises dos polimorfismos genéticos, um subgrupo foi retirado do grupo teste (DG, n=58) e comparado ao grupo ND. Os seguintes parâmetros clínicos e demográficos foram avaliados: percentual de sítios com profundidade de bolsa  6,0 mm (%PBS6,0 mm); índice gengival (IG); perda óssea radiográfica (POR); fumo; duração do diabetes ; idade; índice de massa corpórea (IMC), n de internações e n de dentes presentes. Amostras de sangue e/ou esfregaço bucal foram colhidas de 58 pacientes do grupo teste e de 73 controles. Após a extração do DNA genômico e amplificação da região genômica de interesse por PCR (Polymerase Chain Reaction), o polimorfismo TNFA 1031T>C foi analisado por BbsI RFLP (Restriction Fragment Length Polymorphism). A análise dos produtos de digestão foi feita por eletroforese em gel de poliacrilamida 8%. A análise estatística das freqüências alélica e genotípica juntamente com os dados clínicos e epidemiológicos entre os 2 grupos foi feita através do teste do Mann-Whitney e do Qui-quadrado. Os grupos de estudo obedecem ao princípio de Hardy-Weinberg. No grupo ND, as seguintes freqüências genotípicas foram encontradas: 78,1% (T/T); 20,5% (T/C) e 1,4% (C/C) enquanto no grupo D foram: 42,4%(T/T); 37,3% (T/C) e 20,3% (C/C). A frequência do alelo T no grupo diabético (D) foi de 0,610 ao passo que no grupo ND foi de 0,883. Não foi possível encontrar uma relação entre o polimorfismo -1031 T>C do gene TNFA e a presença de periodontite em diabéticos tipo I. Entretanto, o polimorfismo estudado se mostrou significativamente relacionado (p<0,0001 e OR= 4.85 95%IC 2,271-10,338) à presença do diabetes tipo I.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A esquistossomose acomete 207 milhões de pessoas, com mais de 200 mil mortes anuais. Seu principal agente etiológico é o helminto Schistosoma e o principal modelo experimental, o camundongo. Linhagens de camundongos selecionadas geneticamente para susceptibilidade (TS) e resistência (TR) a tolerância imunológica constituem bons modelos para o estudo da resposta imunológica específica e inespecífica nas infecções. O objetivo deste trabalho foi caracterizar a infecção experimental por S. mansoni nestes camundongos, evidenciando a imunopatologia por diversos parâmetros na fase aguda da infecção. TR e TS não diferiram quanto a penetração de cercárias, recuperação de vermes adultos, fecundidade/produtividade de ovos das fêmeas de S. mansoni, mas predominaram ovos mortos em TS. Quanto maior o número de casais, maior a probabilidade de troca de casais e regressão sexual da fêmea, além de pequena redução da produtividade de ovos. Análise ultraestrutural dos parasitos machos recuperados de TS apresentaram tubérculos edemaciados, espinhos encurtados e em menor densidade que os parasitos dos TR. O tegumento dos parasitos recuperados de TS apresentou-se desorganizado, intensamente vacuolizado e com tendência a se desprender da superfície e espinhos internalizados e células vitelínicas desorganizadas. TS desenvolveram granulomas hepáticos grandes, com fibras radiais e predomínio do estágio exsudativo-produtivo com características de fase produtiva (EP/P), enquanto camundongos TR desenvolveram granulomas menores, com fibras concêntricas e predomínio de granulomas exsudativo-produtivos. TS desenvolveu hepatomegalia mais acentuada na fase aguda da infecção e exacerbada esplenomegalia na fase crônica. A aspartato aminotransferase mais elevada nos TR foi coerente com a acentuada histólise nos granulomas iniciais dos TR. É possível que a histólise menor em TS tenha contribuído para sua intensa hepatomegalia na fase aguda. Leucócitos totais séricos aumentaram em TS, nas fases aguda e crônica, mas não em TR. TS apresentaram anemia durante a fase crônica da infecção, possivelmente devido ao desvio na hematopoiese medular para a produção de leucócitos ou apoptose das hemácias. A mieloperoxidase neutrofílica hepática e no íleo foi maior em TS e a peroxidase de eosinófilos foi mais elevada no íleo do TS. Ambas as linhagens produziram IFN-γ, mas os níveis funcionais de IFN-γ foram diferentes nas duas linhagens em cultura de células. É possível que a imunopatologia hepática grave na linhagem TS possa estar relacionada aos altos títulos IFN-γ. TS produziu IL-10 em maior quantidade, entretanto esta citocina não foi capaz de regular o crescimento exacerbado dos granulomas hepáticos. Altos títulos de IL-4 na linhagem TS também são coerentes com a exacerbação dos granulomas, pois, como a IL-13, a IL-4 induz síntese de colágeno e está relacionada ao desenvolvimento da fibrose no granuloma esquistossomótico. Observamos redução do percentual relativo de células T CD4+ hepáticas de animais infectados em ambas as linhagens e redução percentual nas subpopulações de linfócitos B na medula óssea (precursores, linfócitos B imaturos, maduros e plasmócitos) mais acentuada em TS que em TR, possivelmente devido a extensa mobilização de B imaturos induzida pela inflamação ou desvio da hematopoiese para síntese de granulócitos em TS. Quantitativamente, TR não alterou suas subpopulações de linfócitos B. TS e TR são bons modelos para estudo da resposta imunológica na infecção esquistossomótica experimental. Novos estudos são necessários para confirmar nossas propostas e compreender os mecanismos envolvidos na diferença da resposta imunológica dessas linhagens na relação schistosoma-hospedeiro.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A mamoplastia de aumento está associada a alto grau de satisfação e significativa melhora da qualidade de vida das pacientes. Apesar disso, uma das principais causas de reoperação após esse procedimento se refere a deformidades de contorno e questões volumétricas. Ainda existem poucos dados objetivos para análise volumétrica pós-operatória da mamoplastia de aumento. O parênquima mamário sofre alterações microvasculares quando sob compressão mecânica, porém o tecido muscular é mais suscetível à lesão quando submetido a pressão do que outros tecidos, tendo pouca tolerância à compressão mecânica. O objetivo deste estudo é avaliar e comparar as alterações no parênquima mamário na mamoplastia de aumento subglandular e submuscular, além de avaliar as alterações volumétricas e funcionais da musculatura peitoral após a inserção de implantes no plano submuscular. Cinquenta e oito pacientes do sexo feminino foram randomizadas em dois grupos de estudo, com 24 pacientes cada, e um grupo controle com dez pacientes, de acordo com critérios de inclusão e não inclusão. Das pacientes do grupo de estudo, 24 foram submetidas à mamoplastia de aumento com inserção de implantes no plano suglandular e 24 foram submetidas ao procedimento no plano submuscular. As pacientes do grupo subglandular realizaram análise volumétrica da glândula mamária e as pacientes dos grupos submuscular e controle, além da volumetria mamária, também realizaram volumetria do músculo peitoral maior. A avaliação volumétrica foi realizada no pré-operatório e no pós-operatório, aos seis e 12 meses, por meio de ressonância magnética. Apenas as pacientes do grupo submuscular foram submetidas à avaliação da força muscular, com a utilização de teste isocinético, no pré-operatório e no pós-operatório, aos três, seis e 12 meses. Todas as pacientes estavam sob uso de anticoncepcional oral de baixa dosagem e as pacientes do grupo submuscular permaneceram afastadas de atividades físicas por um período de dois meses no pós-operatório. O grupo subglandular apresentou 22,8% de atrofia da glândula mamária ao final dos 12 meses, enquanto que o grupo submuscular não apresentou atrofia glandular ao final de um ano. O grupo submuscular apresentou atrofia muscular de 49,80% e redução da força muscular em adução após um ano de estudo. Não se observou correlação da forca muscular com a perda volumétrica, assim como não se observou alteração de forca em abdução. Concluímos que a mamoplastia de aumento suglandular causa atrofia do parênquima mamário, enquanto que o procedimento submuscular não causa esta alteração no parênquima mamário após o período de 12 meses pós-operatórios. Em contrapartida, a mamoplastia de aumento submuscular causa atrofia do músculo peitoral maior com diminuição da força muscular em adução após 12 meses de pós-operatório, sem correlação com a alteração de volume muscular.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

一体化反应器由于投资少、占地小、管理运行方便等优点而备受青睐。但现有的一体化反应器大都适用于处理中低浓度废水,耐受负荷普遍偏低。本课题研制出新型高效的厌氧好氧一体化生物反应器,旨在通过反应器结构优化、高效微生物载体研制、配合高效微生物菌剂技术处理中高浓度有机废水,实现高效和低耗,降低设备造价,提高反应器运行稳定性。 首先开展了菌剂对废水的适配试验。采用15种不同的微生物菌剂,以葡萄糖配水、中药提取废水、啤酒废水、氨氮配水为基质,分别测定了微生物菌剂的耗氧速率和厌氧比产甲烷速率,以其为指标比较了各菌剂对废水的适配性。根据结果选择活性高的14#、8#、10#菌剂,在试验室进行了菌剂对废水的连续处理试验,取得良好的处理效果,为菌剂在厌氧好氧一体化生物反应器的小试、中试中的应用奠定了基础。 经小试研究后,又对厌氧好氧一体化生物反应器进行了处理发酵废水的中试研究。试验结果表明,反应器启动快,系统有机负荷2.72 kgCODm-3d-1时整个反应器去除率保持在84.5%~93.19%,在30多天内一次启动成功。冲击负荷试验中,系统总有机负荷最高可达到8.88 kgCODm-3d-1,系统去除率稳定在88.10%~96.88%,说明反应器处理效率高,抗冲击能力强。稳定运行期间,COD去除率可达90%以上,各项指标都能达到国家排放标准。 此外,对反应器配套系统高效菌剂、高分子复合颗粒载体进行了研究。结果显示,菌剂与反应器适配良好,各功能区形成了丰富、高活性的微生物,厌氧区颗粒污泥TS高达83.9 gL-1,VS/TS为56.9%~57.4%,比产甲烷活性为280~350 mLCH4 gvss-1d-1;好氧区固定化微生物TS高达1.921 gL-1,VS/TS为94.02~94.30%。对载体性能的研究表明,此高分子复合颗粒载体密度适中,易于流化,不易流失;粗糙多空,易于挂膜;且无生物毒害作用,稳定安全,是一种优良的生物载体。反应器各功能区对废水的降解过程分析,说明了反应器、菌剂、载体适配良好,在其协同作用下,实现了污染物的高效降解。 The integrated reactors were popular because of their characteristics such as little investment, small occupation of land, convenient of manage and running etc. But the present integrated reactors were mostly applied for treating wastewater of low concentration, the load tolerance was generally on the low side. A new type integrated anaerobic-aerobic bio-reactor was developed, which was conducted to treating organic wastewater of middle or high concentration by optimization of reactor structure, development of efficient microbe carrier and adaptation of high active microbial blends, to achieve high efficiency and low consume, reduce equipment cost, enhance running stabilization of reactor. The adaptability test of microbial blends on different wastewater was carried on firstly. Oxygen consumption rate and anaerobic specific activity of methane producing of 15 different microbial blends were measured separately taking glucose artificial wastewater, Chinese herb extracting wastewater, brewery wastewater and ammonia nitrogen artificial wastewater as substrate, by which the adaptabilities of different microbial blends to wastewater were compared. According to the results high active microbial blends 14#, 8# and 10# were selected and used in the continuous treatment of wastewater in the laboratory and had obtained good effect, which had laid a foundation for application microbial blends to small scale test and pilot test of integrated anaerobic-aerobic bio-reactor. After the small scale test, the pilot test of the integrated anaerobic-aerobic bio-reactor treating fermentation wastewater was carried on. The test results showed fast initiation of the reactor. When system organic load reached 2.72 kgCODm-3d-1the COD removal rate of the reactor was stable between 84.5%~93.19% and it initiated successfully in more than 30 days at a time. In the load shock test the maximum organic load of system could reach to 8.88 kgCODm-3d-1 and the COD removal rate could be stable between 88.10%~96.88% which indicated that the reactor was efficient for treating wastewater and had strong resistance to shock load. At stable running period the COD removal rate of the reactor was over 90% and each index of wastewater could reach to the national discharge standards. In addition, the high active microbial blends and the macromolecule compound granule carrier, the matching system of the reactor was studied. It showed that the microbial blends adapted well to the reactor and abundant and high active microbes were formed in each functional field. The TS of granule sludge in anaerobic field was as high as 83.9 gL-1, the VS/TS was 56.9%~57.4%, the specific activity of methane producing was 280~350 mLCH4 gvss-1d-1. And the TS of immobilized biological granule was as high as 1.921 gL-1, the VS/TS was 94.02%~94.30%. Study on the carrier showed that the self-made macromolecular compound granule carrier was moderate of density, easy of fluidization, unease of running off, rough and porous, easy of films fixation, no bio-toxic, stable and safe, was a kind of superior carrier. Analysis of degradation process in each functional field confirmed the reactor, microbial blends and carriers were in good adaptation and wastewater was decontaminated by their cooperation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

生物质燃料乙醇是一种高度清洁的交通液体燃料,是减少温室气体排放,缓解大气污染的最佳技术选择。以非粮原料生产燃料乙醇可以在进行能源生产的同时保证粮食安全,有利于产业的可持续发展。在众多的非粮原料中,甘薯是我国开发潜力最大的生物质能源作物之一。我国占世界甘薯种植总面积和产量的90%。同时,甘薯的单位面积燃料乙醇产量远大于玉米和小麦。其成本是目前酒精中最低廉的,因此利用甘薯生产乙醇是发展生物质燃料乙醇的首要选择。目前采用薯类全原料主要采用分批发酵生产乙醇,其技术水平低,发酵强度低,一般在0.7-2.5g/(L•h),乙醇浓度低,甘薯发酵乙醇为6-8%(v/v),能耗高,环境负荷大,污染严重。针对上述问题,本文从菌株选育、原料预处理、中试放大、残糖成分分析等方面进行研究。 为了研究乙醇发酵生产规模扩大过程中,大型发酵罐底部高压条件下,CO2对酵母乙醇发酵的影响,我们通过CO2 加压的方法进行模拟试验,研究结果表明,发酵时间随压强的升高而逐渐延长,高压CO2 对乙醇发酵效率影响不大,在0.3 MPa 以下时,发酵效率均可达到90%以上。高压CO2 对发酵的抑制作用是高压和CO2 这两个因素联合作用的结果。高压CO2 条件下,酵母胞外酶和胞内重要酶类的酶活均表现出特征性。0.2 MPa 下,酶活性的变化趋势和0.1 MPa 条件下的较为一致。而0.3 MPa 下的酶活变化趋势与0.4 MPa 下的酶活更为接近。通过全基因表达分析发现在CO2 压力为0.3 MPa 下,乙醇发酵途径中多个基因表达量下调,同时海藻糖合成酶和热激蛋白基因表达量上调。 筛选耐高温的乙醇酵母菌株能够解决糖化温度和发酵温度不协调的矛盾,实现真正意义上的边糖化边发酵。高温发酵还能够降低发酵时的冷却成本,实现乙醇的周年生产。本研究筛选出一株高温发酵菌株Y-H1,进而我们对该菌株的胞外酶和胞内乙醇代谢重要酶类的酶活性进行了分析。结果表明Y-H1 能够在40 ℃条件下正常进行乙醇发酵,发酵33h,最终乙醇浓度达到10.7%(w/w),发酵效率达到90%以上。同时发酵液最终pH 在3.5 左右,显示菌株具有一定的耐酸性能力。同时观察到40 ℃下,菌株的胞外酶和胞内乙醇代谢重要酶类的酶活性发生了变化,乙醇发酵途径中关键酶基因表达下调,而海藻糖合成酶与热激蛋白基因表达量上调,这些结果为进一步研究酵母菌耐热调控机理提供了依据。 糖蜜是一种大规模工业生产乙醇的理想原料,本研究利用选育高浓度乙醇发酵菌株结合配套的发酵稳定剂,研究了糖蜜高浓度乙醇发酵情况。结果表明采用冷酸沉淀预处理糖蜜溶液,采用分批补料的发酵方式,乙醇浓度最高达到了10.26% (w/w),发酵时间为42 h。同时观察到在糖蜜发酵中,乙醛含量与乙醇浓度存在一定的相关性。 快速乙醇发酵对于缩短乙醇生产周期、降低乙醇生产成本、减少原料腐烂损失具有重要意义。本研究诱变和筛选得到了一株快速乙醇发酵菌株10232B。在优化后的发酵条件下,采用10L 发酵罐进行分批乙醇发酵,经过18h,乙醇的最终浓度达到88.5g/L,发酵效率93.6%,平均乙醇生产速度达到4.92 g/L/h。此菌株在保持较高乙醇生产浓度的同时,拥有快速生产乙醇的能力,适合作为快速乙醇发酵生产菌种。 由于鲜甘薯具有粘度大的特点,传统液化糖化处理很难在短时间内充分糖化原料;高粘度的醪液也难以进行管道输送,容易堵塞管路;同时,也会降低后续的乙醇发酵效率。 本文采用了快速粘度分析法对鲜甘薯糊化粘度特性进行了分析,进而对预处理条件进行了研究,在最佳预处理条件下,糖化2h 后,醪液葡萄糖值最高可达99.3,粘度4.5×104 mPa.s,而采用传统糖化工艺,醪液DE 值仅为85.8,粘度大于1.0×105 mPa.s。 此预处理方法也可用于快速糖化不加水的醪液。后续的乙醇发酵试验表明,通过此预处理方法获得的糖化醪液对乙醇发酵无负面影响。 在前期已实现了实验室水平的鲜甘薯燃料乙醇快速乙醇发酵基础上,进一步将发酵规模扩大到500L,在中试水平上对甘薯乙醇发酵进行了研究。结果表明在500L 中试规模,采用边糖化边发酵(SSF)工艺,在料液比为3∶1,发酵醪液最高粘度为6×104mPa.s 条件下,发酵37h,乙醇浓度达到了12.7%(v/v),发酵效率91%,发酵强度为2.7 g/(L•h)。与目前国内的薯类乙醇发酵生产技术水平具有明显的优越性。 为研究甘薯、木薯乙醇发酵中残糖的组成,采用了高效液相色谱—蒸发光散射检测法,对乙醇发酵残糖进行了分析。结果表明,甘薯、木薯乙醇发酵残糖均为寡聚糖,主要由葡萄糖、木糖、半乳糖、阿拉伯糖和甘露糖构成。随着发酵时间延长,寡聚糖中的葡萄糖、半乳糖、甘露糖可被缓慢的水解释放。提高糖化酶量仅在一定程度上降低残糖,过量的糖化酶反而会导致残糖增加。同时发现3, 5-二硝基水杨酸法不能准确测定甘薯、木薯乙醇发酵中的残总糖含量。进一步筛选了两株残糖降解菌株,对甘薯乙醇发酵残糖的降解利用率均达到了40%以上,而且还能显著降低发酵醪液粘度。经形态学和rRNA ITS 序列分析,确定这两株菌分别属于为木霉属和曲霉属黑曲霉组。 通过对以甘薯原料为代表的非粮原料发酵技术研究开发,以期形成乙醇转化率高,能耗低,生产效率高、季节适应性好,原料适应性广,经济性强,符合清洁生产机制的燃料乙醇高效转化技术,为具有我国特色的燃料乙醇发展模式提供技术支持。 Sweet potato is one of the major feedstock for the fuel ethanol production in China. The planting area and the yield in China take 90% of the world. Sweet potato is an efficient kind of energy crops. The energy outcome per area is higher than corn or wheat. And the manufacture cost of ethanol is the lowest, compared with corn and wheat. So sweet potato is the favorable crop for the bioethanol production in China. However, the low-level fermentation technology restricts the development of ethanol production by sweet potato, including slow ethanol production rate, low ethanol concentration and high energy cost. To solve these problems, we conducted research on the strain breeding, pretreatment, pilot fermentation test and residual saccharides analysis. To study the impact of hyperbaric condition at bottom of the large fermentor on yeast fermentation, high pressure carbon dioxide (CO2) was adopted to simulate the situation. The results showed that the fermentation was prolonged with the increasing pressure. The pressure of CO2 had little impact on the ethanol yield which could reach 90% under the pressure below 0.3 MPa. The inhibition was combined by the high pressure and CO2. Under the high CO2 pressure, the extracellular and important intracellular enzyme activities were different from those under normal state. The changes under 0.1 MPa and 0.2 MPa were similar. The changes under 0.3 MPa were closer to those under 0.4 MPa. The application of thermotolerance yeast could solve the problem of the inconsistent temperature between fermentation and saccharificaton and fulfill the real simultaneous saccharification and fermentation. And it could reduce the cooling cost. A thermotolerance strain Y-H1 was isolated in our research. It gave high ethanol concentration of 10.7%(w/w)at 40 ℃ for 33 h. The ethanol yield efficiency was over 90%. At 40 ℃, the extracellular and important intracellular enzyme activities of Y-H1 showed the difference with normal state, which may indicate its physiological changes at the high temperature. Molasses is another feedstock for industrial ethanol production. By our ethanol-tolerance strain and the regulation reagents, the fermentation with high ethanol concentration was investigated. In fed-batch mode combined with cold acid deposition, the highest ethanol concentration was 10.26% (w/w) for 42h. The aldehyde concentration in fermentation was found to be related to ethanol concentration. The development of a rapid ethanol fermentation strain of Zymomonas mobilis is essential for reducing the cost of ethanol production and for the timely utilization of fresh material that is easily decayed in the Chinese bioethanol industry. A mutant Z. mobilis strain, 10232B, was generated by UV mutagenesis. Under these optimized conditions, fermentation of the mutant Z. mobilis 10232B strain was completed in just 18 h with a high ethanol production rate, at an average of 4.92 gL-1h-1 per batch. The final maximum ethanol concentration was 88.5 gL-1, with an ethanol yield efficiency of 93.6%. This result illustrated the potential use of the mutant Z. mobilis 10232B strain in rapid ethanol fermentation in order to help reduce the cost of industrial ethanol production. As fresh sweet potato syrup shows high viscosity, it is hard to be fully converted to glucose by enzymes in the traditional saccharification process. The high-viscosity syrup is difficult to be transmitted in pipes, which may be easily blocked. Meanwhile it could also reduce the later ethanol fermentation efficiency. To solve these problems, effects of the pretreatment conditions were investigated. The highest dextrose equivalent value of 99.3 and the lowest viscosity of 4.5×104 mPa.s were obtained by the most favorable pretreatment conditions, while those of 85.8 and over 1.0×105 mPa.s was produced by traditional treatment conditions. The pretreatment could also be applied on the material syrup without adding water. The later experiments showed that the pretreated syrup had no negative effect on the ethanol fermentation and exhibited lower viscosity. The fuel ethanol rapid production from fresh sweet potato was enlarged in the 500L pilot scale after its fulfillment on the laboratory level. The optimal ratio of material to water was 3 to 1 in 500L fermentor. With low-temperature-cooking (85 ℃) using SSF, the Saccharomyces cerevisiae was able to produce ethanol 97.44 g/kg for 37h, which reached 92% of theoretical yield. The average ethanol production rate was 4.06 g/kg/h. And the maximum viscosity of syrup reached 6×104mPa.s. The results showed its superiority over current industrial ethanol fermentation. The compositions of the residual saccharides in the ethanol fermentation by sweet potato and cassava were analyzed by high performance liquid chromatography coupled with evaporative light-scattering detector. The results showed that all the residual saccharides were oligosaccharides, mainly composed of glucose, xylose, galactose, arabinose and mannose. The glucose, galactose and mannose could be slowly hydrolyzed from oligosaccharides in syrup during a long period. To increase the glucoamylase dosage could lower the residual saccharides to a certain extent. However, excess glucoamylase dosage led to more residual saccharides. And the method of 3, 5-dinitrosalicylic acid could not accurately quantify the residual total saccharides content. Two residual saccharides degrading strains were isolated, which could utilize 40% of total residual saccharide and lower the syrup viscosity. With the analysis of morphology and internal transcribed spacer sequence, they were finally identified as species of Trichoderma and Aspergillus niger.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

High levels of available nitrogen (N) and carbon (C) have the potential to increase soil N and C mineralization We hypothesized that with an external labile C or N supply alpine meadow soil will have a significantly higher C mineralization potential and that temperature sensitivity of C mineralization will increase To test the hypotheses an incubation experiment was conducted with two doses of N or C supply at temperature of 5 15 and 25 C Results showed external N supply had no significant effect on CO2 emission However external C supply increased CO2 emission Temperature coefficient (Q(10)) ranged from 113 to 1 29 Significantly higher values were measured with C than with N addition and control treatment Temperature dependence of C mineralization was well-represented by exponential functions Under the control CO2 efflux rate was 425 g CO2-Cm-2 year(-1) comparable to the in situ measurement of 422 g CO2-Cm-2 year(-1) We demonstrated if N is disregarded microbial decomposition is primarily limited by lack of labile C It is predicted that labile C supply would further increase CO2 efflux from the alpine meadow soil (C) 2010 Elsevier Masson SAS All rights reserved

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Vanadium has well-documented lowering glucose properties both in vitro and in vivo. The design of new oxovanadium(IV) coordination compounds, intended for use as insulin-enhancing agents in the treatment of diabetes mellitus, can potentially benefit from a synergistic approach, in which the whole complex has more than an additive effect from its component parts. Biological testing with oxovanadium(IV) organic phosphonic acid, for insulin-enhancing potential included acute administration, by oral gavage in streptozotocin (STZ) diabetic rats. The complexes of oxovanadium(IV) amino acid-N-phosphonic acid exhibit higher lowering glucose activity in vivo. The interaction of the complexes of oxovanadium(IV) amino acid-N-phosphonic acid with DNA was investigated by agarose gel electrophoresis. The results indicated that these complexes have strong interaction with DNA.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Fuel of proton exchange membrane fuel cells (PEMFC) mostly comes from reformate containing CO. which will poison the fuel cell electrocatalyst. The effect of CO on the performance of PEMFC is studied in this paper. Several electrode structures are investigated for CO containing fuel. The experimental results show that thin-film catalyst electrode has higher specific catalyst activity and traditional electrode structure can stand for CO poisoning to some extent. A composite electrode structure is proposed for improving CO tolerance of PEMFCs. With the same catalyst loading. the new composite electrode has improved cell performance than traditional electrode with PtRu/C electrocatalyst for both pure hydrogen and CO/H-2. The EDX test of composite anode is also performed in this paper, the effective catalyst distribution is found in the composite anode. (C) 2002 Elsevier Science B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The response of Lactococcus lactis subsp. cremoris NCDO 712 to low water activity (aw) was investigated, both in relation to growth following moderate reductions in the aw and in terms of survival following substantial reduction of the aw with NaCI. Lc.lactis NCDO 712 was capable of growth in the presence of ≤ 4% w/v NaCI and concentrations in excess of 4% w/v were lethal to the cells. The presence of magnesium ions significantly increased the resistance of NCDO 712 to challenge with NaCI and also to challenge with high temperature or low pH. Survival of Lc.lactis NCDO 712 exposed to high NaCI concentrations was growth phase dependent and cells were most sensitive in the early exponential phase of growth. Pre-exposure to 3% w/v NaCI induced limited protection against subsequent challenge with higher NaCI concentrations. The induction was inhibited by chloramphenicol and even when induced, the response did not protect against NaCI concentrations> 10% w/v. When growing at low aw, potassium was accumulated by Lc. lactis NCDO 712 growing at low aw, if the aw was reduced by glucose or fructose, but not by NaCI. Reducing the potassium concentration of chemically defined medium from 20 to 0.5 mM) produced a substantial reduction in the growth rate, if the aw was reduced with NaCI, but not with glucose or fructose. The reduction of the growth rate correlated strongly with a reduction in the cytoplasmic potassium concentration and in cell volume. Addition of the compatible solute glycine betaine, partially reversed the inhibition of growth rate and partially restored the cell volume. The potassium transport system was characterised in cells grown in medium at both high and low aw. It appeared that a single system was present, which was induced approximately two-fold by growth at low aw. Potassium transport was assayed in vitro using cells depleted of potassium; the assay was competitively inhibited by Na+ and by the other monovalent cations NH4+, Li+, and Cs+. There was a strong correlation between the ability of strains of Lc. lactis subsp. lactis and subsp. cremoris to grow at low aw and their ability to accumulate the compatible solute glycine betaine. The Lc. lactis subsp. cremoris strains incapable of growth at NaCI concentrations> 2% w/v did not accumulate glycine betaine when growing at low aw, whereas strains capable of growth at NaCI concentrations up to 4% w/v did. A mutant, extremely sensitive to low aw was isolated from the parent strain Lc. lactis subsp. cremoris MG 1363, a plasmid free derivative of NCDO 712. The parent strain tolerated up to 4% w/v NaCI and actively accumulated glycine betaine when challenged at low aw. The mutant had lost the ability to accumulate glycine betaine and was incapable of growth at NaCI concentrations >2% w/v or the equivalent concentration of glucose. As no other compatible solute seemed capable of substitution for glycine betaine, the data suggest that the traditional; phenotypic speciation of strains on the basis of tolerance to 4% w/v NaCI can be explained as possession or lack of a glycine betaine transport system.