928 resultados para Nonlinear constrained optimization problems
Resumo:
This paper addresses the challenging task of computing multiple roots of a system of nonlinear equations. A repulsion algorithm that invokes the Nelder-Mead (N-M) local search method and uses a penalty-type merit function based on the error function, known as 'erf', is presented. In the N-M algorithm context, different strategies are proposed to enhance the quality of the solutions and improve the overall efficiency. The main goal of this paper is to use a two-level factorial design of experiments to analyze the statistical significance of the observed differences in selected performance criteria produced when testing different strategies in the N-M based repulsion algorithm. The main goal of this paper is to use a two-level factorial design of experiments to analyze the statistical significance of the observed differences in selected performance criteria produced when testing different strategies in the N-M based repulsion algorithm.
Resumo:
Dissertação para obtenção do Grau de Mestre em Engenharia Electrotécnica e Computadores
Resumo:
Dissertação para obtenção do Grau de Mestre em Engenharia Informática
Resumo:
Dissertação para obtenção do Grau de Mestre em Logica Computicional
Resumo:
Optimization is a very important field for getting the best possible value for the optimization function. Continuous optimization is optimization over real intervals. There are many global and local search techniques. Global search techniques try to get the global optima of the optimization problem. However, local search techniques are used more since they try to find a local minimal solution within an area of the search space. In Continuous Constraint Satisfaction Problems (CCSP)s, constraints are viewed as relations between variables, and the computations are supported by interval analysis. The continuous constraint programming framework provides branch-and-prune algorithms for covering sets of solutions for the constraints with sets of interval boxes which are the Cartesian product of intervals. These algorithms begin with an initial crude cover of the feasible space (the Cartesian product of the initial variable domains) which is recursively refined by interleaving pruning and branching steps until a stopping criterion is satisfied. In this work, we try to find a convenient way to use the advantages in CCSP branchand- prune with local search of global optimization applied locally over each pruned branch of the CCSP. We apply local search techniques of continuous optimization over the pruned boxes outputted by the CCSP techniques. We mainly use steepest descent technique with different characteristics such as penalty calculation and step length. We implement two main different local search algorithms. We use “Procure”, which is a constraint reasoning and global optimization framework, to implement our techniques, then we produce and introduce our results over a set of benchmarks.
Resumo:
Simulated moving bed (SMB) chromatography is attracting more and more attention since it is a powerful technique for complex separation tasks. Nowadays, more than 60% of preparative SMB units are installed in the pharmaceutical and in the food in- dustry [SDI, Preparative and Process Liquid Chromatography: The Future of Process Separations, International Strategic Directions, Los Angeles, USA, 2002. http://www. strategicdirections.com]. Chromatography is the method of choice in these ¯elds, be- cause often pharmaceuticals and ¯ne-chemicals have physico-chemical properties which di®er little from those of the by-products, and they may be thermally instable. In these cases, standard separation techniques as distillation and extraction are not applicable. The noteworthiness of preparative chromatography, particulary SMB process, as a sep- aration and puri¯cation process in the above mentioned industries has been increasing, due to its °exibility, energy e±ciency and higher product purity performance. Consequently, a new SMB paradigm is requested by the large number of potential small- scale applications of the SMB technology, which exploits the °exibility and versatility of the technology. In this new SMB paradigm, a number of possibilities for improving SMB performance through variation of parameters during a switching interval, are pushing the trend toward the use of units with smaller number of columns because less stationary phase is used and the setup is more economical. This is especially important for the phar- maceutical industry, where SMBs are seen as multipurpose units that can be applied to di®erent separations in all stages of the drug-development cycle. In order to reduce the experimental e®ort and accordingly the coast associated with the development of separation processes, simulation models are intensively used. One impor- tant aspect in this context refers to the determination of the adsorption isotherms in SMB chromatography, where separations are usually carried out under strongly nonlinear conditions in order to achieve higher productivities. The accurate determination of the competitive adsorption equilibrium of the enantiomeric species is thus of fundamental importance to allow computer-assisted optimization or process scale-up. Two major SMB operating problems are apparent at production scale: the assessment of product quality and the maintenance of long-term stable and controlled operation. Constraints regarding product purity, dictated by pharmaceutical and food regulatory organizations, have drastically increased the demand for product quality control. The strict imposed regulations are increasing the need for developing optically pure drugs.(...)
Resumo:
Sonae MC is constantly innovating and keeping up with the new market trends, being increasingly focused on E-commerce due to its growing importance. In that area, a telephone line is available to support customers with their problems. However, rare were the cases in which those problems were solved in the first contact. Therefore, the goal of this work was to reengineer these processes to improve the service performance and consequently the customer’s satisfaction. Following an evolutionary approach, improvement opportunities were suggested and if correctly implemented the cases resolution time could decrease 1 day and Sonae MC will save €7.750 per month.
Resumo:
The Electromagnetism-like (EM) algorithm is a population- based stochastic global optimization algorithm that uses an attraction- repulsion mechanism to move sample points towards the optimal. In this paper, an implementation of the EM algorithm in the Matlab en- vironment as a useful function for practitioners and for those who want to experiment a new global optimization solver is proposed. A set of benchmark problems are solved in order to evaluate the performance of the implemented method when compared with other stochastic methods available in the Matlab environment. The results con rm that our imple- mentation is a competitive alternative both in term of numerical results and performance. Finally, a case study based on a parameter estimation problem of a biology system shows that the EM implementation could be applied with promising results in the control optimization area.
Resumo:
The authors propose a mathematical model to minimize the project total cost where there are multiple resources constrained by maximum availability. They assume the resources as renewable and the activities can use any subset of resources requiring any quantity from a limited real interval. The stochastic nature is inferred by means of a stochastic work content defined per resource within an activity and following a known distribution and the total cost is the sum of the resource allocation cost with the tardiness cost or earliness bonus in case the project finishes after or before the due date, respectively. The model was computationally implemented relying upon an interchange of two global optimization metaheuristics – the electromagnetism-like mechanism and the evolutionary strategies. Two experiments were conducted testing the implementation to projects with single and multiple resources, and with or without maximum availability constraints. The set of collected results shows good behavior in general and provide a tool to further assist project manager decision making in the planning phase.
Resumo:
We review several results concerning the long time asymptotics of nonlinear diffusion models based on entropy and mass transport methods. Semidiscretization of these nonlinear diffusion models are proposed and their numerical properties analysed. We demonstrate the long time asymptotic results by numerical simulation and we discuss several open problems based on these numerical results. We show that for general nonlinear diffusion equations the long-time asymptotics can be characterized in terms of fixed points of certain maps which are contractions for the euclidean Wasserstein distance. In fact, we propose a new scaling for which we can prove that this family of fixed points converges to the Barenblatt solution for perturbations of homogeneous nonlinearities for values close to zero.
Resumo:
The goal of the present work was assess the feasibility of using a pseudo-inverse and null-space optimization approach in the modeling of the shoulder biomechanics. The method was applied to a simplified musculoskeletal shoulder model. The mechanical system consisted in the arm, and the external forces were the arm weight, 6 scapulo-humeral muscles and the reaction at the glenohumeral joint, which was considered as a spherical joint. The muscle wrapping was considered around the humeral head assumed spherical. The dynamical equations were solved in a Lagrangian approach. The mathematical redundancy of the mechanical system was solved in two steps: a pseudo-inverse optimization to minimize the square of the muscle stress and a null-space optimization to restrict the muscle force to physiological limits. Several movements were simulated. The mathematical and numerical aspects of the constrained redundancy problem were efficiently solved by the proposed method. The prediction of muscle moment arms was consistent with cadaveric measurements and the joint reaction force was consistent with in vivo measurements. This preliminary work demonstrated that the developed algorithm has a great potential for more complex musculoskeletal modeling of the shoulder joint. In particular it could be further applied to a non-spherical joint model, allowing for the natural translation of the humeral head in the glenoid fossa.
Resumo:
We propose a mixed finite element method for a class of nonlinear diffusion equations, which is based on their interpretation as gradient flows in optimal transportation metrics. We introduce an appropriate linearization of the optimal transport problem, which leads to a mixed symmetric formulation. This formulation preserves the maximum principle in case of the semi-discrete scheme as well as the fully discrete scheme for a certain class of problems. In addition solutions of the mixed formulation maintain exponential convergence in the relative entropy towards the steady state in case of a nonlinear Fokker-Planck equation with uniformly convex potential. We demonstrate the behavior of the proposed scheme with 2D simulations of the porous medium equations and blow-up questions in the Patlak-Keller-Segel model.
Resumo:
This paper provides a natural way of reaching an agreement between two prominent proposals in a bankruptcy problem. Particularly, using the fact that such problems can be faced from two different points of views, awards and losses, we justify the average of any pair of dual bankruptcy rules through the definition a double recursive process. Finally, by considering three posible sets of equity principles that a particular society may agree on, we retrieve the average of old and well known bankruptcy rules, the Constrained Equal Awards and the Constrained Equal Losses rules, Piniles’ rule and its dual rule, and the Constrained Egalitarian rule and its dual rule. Keywords: Bankruptcy problems, Midpoint, Bounds, Duality, Recursivity. JEL classification: C71, D63, D71.
Resumo:
The commitment among agents has always been a difficult task, especially when they have to decide how to distribute the available amount of a scarce resource among all. On the one hand, there are a multiplicity of possible ways for assigning the available amount; and, on the other hand, each agent is going to propose that distribution which provides her the highest possible award. In this paper, with the purpose of making this agreement easier, firstly we use two different sets of basic properties, called Commonly Accepted Equity Principles, to delimit what agents can propose as reasonable allocations. Secondly, we extend the results obtained by Chun (1989) and Herrero (2003), obtaining new characterizations of old and well known bankruptcy rules. Finally, using the fact that bankruptcy problems can be analyzed from awards and losses, we define a mechanism which provides a new justification of the convex combinations of bankruptcy rules. Keywords: Bankruptcy problems, Unanimous Concessions procedure, Diminishing Claims mechanism, Piniles’ rule, Constrained Egalitarian rule. JEL classification: C71, D63, D71.
Resumo:
In a distribution problem, and specfii cally in bankruptcy issues, the Proportional (P) and the Egalitarian (EA) divisions are two of the most popular ways to resolve the conflict. The Constrained Equal Awards rule (CEA) is introduced in bankruptcy literature to ensure that no agent receives more than her claim, a problem that can arise when using the egalitarian division. We propose an alternative modi cation, by using a convex combination of P and EA. The recursive application of this new rule finishes at the CEA rule. Our solution concept ensures a minimum amount to each agent, and distributes the remaining estate in a proportional way. Keywords: Bankruptcy problems, Proportional rule, Equal Awards, Convex combination of rules, Lorenz dominance. JEL classi fication: C71, D63, D71.