914 resultados para Model transformation analysis


Relevância:

40.00% 40.00%

Publicador:

Resumo:

The recent identification of non-thermal plasmas using EISCAT data has been made possible by their occurrence during large, short-lived flow bursts. For steady, yet rapid, ion convection the only available signature is the shape of the spectrum, which is unreliable because it is open to distortion by noise and sampling uncertainty and can be mimicked by other phenomena. Nevertheless, spectral shape does give an indication of the presence of non-thermal plasma, and the characteristic shape has been observed for long periods (of the order of an hour or more) in some experiments. To evaluate this type of event properly one needs to compare it to what would be expected theoretically. Predictions have been made using the coupled thermosphere-ionosphere model developed at University College London and the University of Sheffield to show where and when non-Maxwellian plasmas would be expected in the auroral zone. Geometrical and other factors then govern whether these are detectable by radar. The results are applicable to any incoherent scatter radar in this area, but the work presented here concentrates on predictions with regard to experiments on the EISCAT facility.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

We used a light-use efficiency model of photosynthesis coupled with a dynamic carbon allocation and tree-growth model to simulate annual growth of the gymnosperm Callitris columellaris in the semi-arid Great Western Woodlands, Western Australia, over the past 100 years. Parameter values were derived from independent observations except for sapwood specific respiration rate, fine-root turnover time, fine-root specific respiration rate and the ratio of fine-root mass to foliage area, which were estimated by Bayesian optimization. The model reproduced the general pattern of interannual variability in radial growth (tree-ring width), including the response to the shift in precipitation regimes that occurred in the 1960s. Simulated and observed responses to climate were consistent. Both showed a significant positive response of tree-ring width to total photosynthetically active radiation received and to the ratio of modeled actual to equilibrium evapotranspiration, and a significant negative response to vapour pressure deficit. However, the simulations showed an enhancement of radial growth in response to increasing atmospheric CO2 concentration (ppm) ([CO2]) during recent decades that is not present in the observations. The discrepancy disappeared when the model was recalibrated on successive 30-year windows. Then the ratio of fine-root mass to foliage area increases by 14% (from 0.127 to 0.144 kg C m-2) as [CO2] increased while the other three estimated parameters remained constant. The absence of a signal of increasing [CO2] has been noted in many tree-ring records, despite the enhancement of photosynthetic rates and water-use efficiency resulting from increasing [CO2]. Our simulations suggest that this behaviour could be explained as a consequence of a shift towards below-ground carbon allocation.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Climate controls fire regimes through its influence on the amount and types of fuel present and their dryness. CO2 concentration constrains primary production by limiting photosynthetic activity in plants. However, although fuel accumulation depends on biomass production, and hence on CO2 concentration, the quantitative relationship between atmospheric CO2 concentration and biomass burning is not well understood. Here a fire-enabled dynamic global vegetation model (the Land surface Processes and eXchanges model, LPX) is used to attribute glacial–interglacial changes in biomass burning to an increase in CO2, which would be expected to increase primary production and therefore fuel loads even in the absence of climate change, vs. climate change effects. Four general circulation models provided last glacial maximum (LGM) climate anomalies – that is, differences from the pre-industrial (PI) control climate – from the Palaeoclimate Modelling Intercomparison Project Phase~2, allowing the construction of four scenarios for LGM climate. Modelled carbon fluxes from biomass burning were corrected for the model's observed prediction biases in contemporary regional average values for biomes. With LGM climate and low CO2 (185 ppm) effects included, the modelled global flux at the LGM was in the range of 1.0–1.4 Pg C year-1, about a third less than that modelled for PI time. LGM climate with pre-industrial CO2 (280 ppm) yielded unrealistic results, with global biomass burning fluxes similar to or even greater than in the pre-industrial climate. It is inferred that a substantial part of the increase in biomass burning after the LGM must be attributed to the effect of increasing CO2 concentration on primary production and fuel load. Today, by analogy, both rising CO2 and global warming must be considered as risk factors for increasing biomass burning. Both effects need to be included in models to project future fire risks.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Customers will not continue to pay for a service if it is perceived to be of poor quality, and/or of no value. With a paradigm shift towards business dependence on service orientated IS solutions [1], it is critical that alignment exists between service definition, delivery, and customer expectation, businesses are to ensure customer satisfaction. Services, and micro-service development, offer businesses a flexible structure for solution innovation, however, constant changes in technology, business and societal expectations means an iterative analysis solution is required to i) determine whether provider services adequately meet customer segment needs and expectations, and ii) to help guide business service innovation and development. In this paper, by incorporating multiple models, we propose a series of steps to help identify and prioritise service gaps. Moreover, the authors propose the Dual Semiosis Analysis Model, i.e. a tool that highlights where within the symbiotic customer / provider semiosis process, requirements misinterpretation, and/or service provision deficiencies occur. This paper offers the reader a powerful customer-centric tool, designed to help business managers highlight both what services are critical to customer quality perception, and where future innovation

Relevância:

40.00% 40.00%

Publicador:

Resumo:

With the development of convection-permitting numerical weather prediction the efficient use of high resolution observations in data assimilation is becoming increasingly important. The operational assimilation of these observations, such as Dopplerradar radial winds, is now common, though to avoid violating the assumption of un- correlated observation errors the observation density is severely reduced. To improve the quantity of observations used and the impact that they have on the forecast will require the introduction of the full, potentially correlated, error statistics. In this work, observation error statistics are calculated for the Doppler radar radial winds that are assimilated into the Met Office high resolution UK model using a diagnostic that makes use of statistical averages of observation-minus-background and observation-minus-analysis residuals. This is the first in-depth study using the diagnostic to estimate both horizontal and along-beam correlated observation errors. By considering the new results obtained it is found that the Doppler radar radial wind error standard deviations are similar to those used operationally and increase as the observation height increases. Surprisingly the estimated observation error correlation length scales are longer than the operational thinning distance. They are dependent on both the height of the observation and on the distance of the observation away from the radar. Further tests show that the long correlations cannot be attributed to the use of superobservations or the background error covariance matrix used in the assimilation. The large horizontal correlation length scales are, however, in part, a result of using a simplified observation operator.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Land cover data derived from satellites are commonly used to prescribe inputs to models of the land surface. Since such data inevitably contains errors, quantifying how uncertainties in the data affect a model’s output is important. To do so, a spatial distribution of possible land cover values is required to propagate through the model’s simulation. However, at large scales, such as those required for climate models, such spatial modelling can be difficult. Also, computer models often require land cover proportions at sites larger than the original map scale as inputs, and it is the uncertainty in these proportions that this article discusses. This paper describes a Monte Carlo sampling scheme that generates realisations of land cover proportions from the posterior distribution as implied by a Bayesian analysis that combines spatial information in the land cover map and its associated confusion matrix. The technique is computationally simple and has been applied previously to the Land Cover Map 2000 for the region of England and Wales. This article demonstrates the ability of the technique to scale up to large (global) satellite derived land cover maps and reports its application to the GlobCover 2009 data product. The results show that, in general, the GlobCover data possesses only small biases, with the largest belonging to non–vegetated surfaces. In vegetated surfaces, the most prominent area of uncertainty is Southern Africa, which represents a complex heterogeneous landscape. It is also clear from this study that greater resources need to be devoted to the construction of comprehensive confusion matrices.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

This paper presents a GIS-based multicriteria flood risk assessment and mapping approach applied to coastal drainage basins where hydrological data are not available. It involves risk to different types of possible processes: coastal inundation (storm surge), river, estuarine and flash flood, either at urban or natural areas, and fords. Based on the causes of these processes, several environmental indicators were taken to build-up the risk assessment. Geoindicators include geological-geomorphologic proprieties of Quaternary sedimentary units, water table, drainage basin morphometry, coastal dynamics, beach morphodynamics and microclimatic characteristics. Bioindicators involve coastal plain and low slope native vegetation categories and two alteration states. Anthropogenic indicators encompass land use categories properties such as: type, occupation density, urban structure type and occupation consolidation degree. The selected indicators were stored within an expert Geoenvironmental Information System developed for the State of Sao Paulo Coastal Zone (SIIGAL), which attributes were mathematically classified through deterministic approaches, in order to estimate natural susceptibilities (Sn), human-induced susceptibilities (Sa), return period of rain events (Ri), potential damages (Dp) and the risk classification (R), according to the equation R=(Sn.Sa.Ri).Dp. Thematic maps were automatically processed within the SIIGAL, in which automata cells (""geoenvironmental management units"") aggregating geological-geomorphologic and land use/native vegetation categories were the units of classification. The method has been applied to the Northern Littoral of the State of Sao Paulo (Brazil) in 32 small drainage basins, demonstrating to be very useful for coastal zone public politics, civil defense programs and flood management.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Developed countries have an even distribution of published papers on the seventeen model organisms. Developing countries have biased preferences for a few model organisms which are associated with endemic human diseases. A variant of the Hirsch-index, that we call the mean (mo)h-index (""model organism h-index""), shows an exponential relationship with the amount of papers published in each country on the selected model organisms. Developing countries cluster together with low mean (mo)h-indexes, even those with high number of publications. The growth curves of publications on the recent model Caenorhabditis elegans in developed countries shows different formats. We also analyzed the growth curves of indexed publications originating from developing countries. Brazil and South Korea were selected for this comparison. The most prevalent model organisms in those countries show different growth curves when compared to a global analysis, reflecting the size and composition of their research communities.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The use of bivariate distributions plays a fundamental role in survival and reliability studies. In this paper, we consider a location scale model for bivariate survival times based on the proposal of a copula to model the dependence of bivariate survival data. For the proposed model, we consider inferential procedures based on maximum likelihood. Gains in efficiency from bivariate models are also examined in the censored data setting. For different parameter settings, sample sizes and censoring percentages, various simulation studies are performed and compared to the performance of the bivariate regression model for matched paired survival data. Sensitivity analysis methods such as local and total influence are presented and derived under three perturbation schemes. The martingale marginal and the deviance marginal residual measures are used to check the adequacy of the model. Furthermore, we propose a new measure which we call modified deviance component residual. The methodology in the paper is illustrated on a lifetime data set for kidney patients.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The multivariate skew-t distribution (J Multivar Anal 79:93-113, 2001; J R Stat Soc, Ser B 65:367-389, 2003; Statistics 37:359-363, 2003) includes the Student t, skew-Cauchy and Cauchy distributions as special cases and the normal and skew-normal ones as limiting cases. In this paper, we explore the use of Markov Chain Monte Carlo (MCMC) methods to develop a Bayesian analysis of repeated measures, pretest/post-test data, under multivariate null intercept measurement error model (J Biopharm Stat 13(4):763-771, 2003) where the random errors and the unobserved value of the covariate (latent variable) follows a Student t and skew-t distribution, respectively. The results and methods are numerically illustrated with an example in the field of dentistry.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Skew-normal distribution is a class of distributions that includes the normal distributions as a special case. In this paper, we explore the use of Markov Chain Monte Carlo (MCMC) methods to develop a Bayesian analysis in a multivariate, null intercept, measurement error model [R. Aoki, H. Bolfarine, J.A. Achcar, and D. Leao Pinto Jr, Bayesian analysis of a multivariate null intercept error-in -variables regression model, J. Biopharm. Stat. 13(4) (2003b), pp. 763-771] where the unobserved value of the covariate (latent variable) follows a skew-normal distribution. The results and methods are applied to a real dental clinical trial presented in [A. Hadgu and G. Koch, Application of generalized estimating equations to a dental randomized clinical trial, J. Biopharm. Stat. 9 (1999), pp. 161-178].

Relevância:

40.00% 40.00%

Publicador:

Resumo:

A continuous version of the hierarchical spherical model at dimension d=4 is investigated. Two limit distributions of the block spin variable X(gamma), normalized with exponents gamma = d + 2 and gamma=d at and above the critical temperature, are established. These results are proven by solving certain evolution equations corresponding to the renormalization group (RG) transformation of the O(N) hierarchical spin model of block size L(d) in the limit L down arrow 1 and N ->infinity. Starting far away from the stationary Gaussian fixed point the trajectories of these dynamical system pass through two different regimes with distinguishable crossover behavior. An interpretation of this trajectories is given by the geometric theory of functions which describe precisely the motion of the Lee-Yang zeroes. The large-N limit of RG transformation with L(d) fixed equal to 2, at the criticality, has recently been investigated in both weak and strong (coupling) regimes by Watanabe (J. Stat. Phys. 115:1669-1713, 2004) . Although our analysis deals only with N = infinity case, it complements various aspects of that work.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

We analyze the stability properties of equilibrium solutions and periodicity of orbits in a two-dimensional dynamical system whose orbits mimic the evolution of the price of an asset and the excess demand for that asset. The construction of the system is grounded upon a heterogeneous interacting agent model for a single risky asset market. An advantage of this construction procedure is that the resulting dynamical system becomes a macroscopic market model which mirrors the market quantities and qualities that would typically be taken into account solely at the microscopic level of modeling. The system`s parameters correspond to: (a) the proportion of speculators in a market; (b) the traders` speculative trend; (c) the degree of heterogeneity of idiosyncratic evaluations of the market agents with respect to the asset`s fundamental value; and (d) the strength of the feedback of the population excess demand on the asset price update increment. This correspondence allows us to employ our results in order to infer plausible causes for the emergence of price and demand fluctuations in a real asset market. The employment of dynamical systems for studying evolution of stochastic models of socio-economic phenomena is quite usual in the area of heterogeneous interacting agent models. However, in the vast majority of the cases present in the literature, these dynamical systems are one-dimensional. Our work is among the few in the area that construct and study analytically a two-dimensional dynamical system and apply it for explanation of socio-economic phenomena.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

We have considered a Bayesian approach for the nonlinear regression model by replacing the normal distribution on the error term by some skewed distributions, which account for both skewness and heavy tails or skewness alone. The type of data considered in this paper concerns repeated measurements taken in time on a set of individuals. Such multiple observations on the same individual generally produce serially correlated outcomes. Thus, additionally, our model does allow for a correlation between observations made from the same individual. We have illustrated the procedure using a data set to study the growth curves of a clinic measurement of a group of pregnant women from an obstetrics clinic in Santiago, Chile. Parameter estimation and prediction were carried out using appropriate posterior simulation schemes based in Markov Chain Monte Carlo methods. Besides the deviance information criterion (DIC) and the conditional predictive ordinate (CPO), we suggest the use of proper scoring rules based on the posterior predictive distribution for comparing models. For our data set, all these criteria chose the skew-t model as the best model for the errors. These DIC and CPO criteria are also validated, for the model proposed here, through a simulation study. As a conclusion of this study, the DIC criterion is not trustful for this kind of complex model.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

In this paper we study the Lyapunov stability and Hopf bifurcation in a biological system which models the biological control of parasites of orange plantations. (c) 2007 Elsevier Ltd. All rights reserved.